Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893359832> ?p ?o ?g. }
- W2893359832 endingPage "563" @default.
- W2893359832 startingPage "553" @default.
- W2893359832 abstract "Identification of Key Gene Pathways and Co-Expression Networks of Islets in Human Type 2 Diabetes Lu Li,1,* Zongfu Pan,2,* Si Yang,1 Wenya Shan,1 Yanyan Yang1 1Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China; 2Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, People’s Republic of China *These authors contributed equally to this work Purpose: The number of people with type 2 diabetes (T2D) is growing rapidly worldwide. Islet β-cell dysfunction and failure are the main causes of T2D pathological processes. The aim of this study was to elucidate the underlying pathways and coexpression networks in T2D islets. Materials and methods: We analyzed the differentially expressed genes (DEGs) in the data set GSE41762, which contained 57 nondiabetic and 20 diabetic samples, and developed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Protein–protein interaction (PPI) network, the modules from the PPI network, and the gene annotation enrichment of modules were analyzed as well. Moreover, a weighted correlation network analysis (WGCNA) was applied to screen critical gene modules and coexpression networks and explore the biological significance. Results: We filtered 957 DEGs in T2D islets. Then GO and KEGG analyses identified that key pathways like inflammatory response, type B pancreatic cell differentiation, and calcium ion-dependent exocytosis were involved in human T2D. Three significant modules were filtered from the PPI network. Ribosome biogenesis, extrinsic apoptotic signaling pathway, and membrane depolarization during action potential were associated with the modules, respectively. Furthermore, coexpression network analysis by WGCNA identified 13 distinct gene modules of T2D islets and revealed four modules, which were strongly correlated with T2D and T2D biomarker hemoglobin A1c (HbA1c). Functional annotation showed that these modules mainly enriched KEGG pathways such as NF-kappa B signaling pathway, tumor necrosis factor signaling pathway, cyclic adenosine monophosphate signaling pathway, and peroxisome proliferators-activated receptor signaling pathway. Conclusion: The results provide potential gene pathways and underlying molecular mechanisms for the prevention, diagnosis, and treatment of T2D. Keywords: type 2 diabetes, islet β cell, bioinformatics analysis, differentially expressed genes, WGCNA" @default.
- W2893359832 created "2018-10-05" @default.
- W2893359832 creator A5001539467 @default.
- W2893359832 creator A5008140646 @default.
- W2893359832 creator A5023513530 @default.
- W2893359832 creator A5054844539 @default.
- W2893359832 creator A5067215693 @default.
- W2893359832 date "2018-09-01" @default.
- W2893359832 modified "2023-10-14" @default.
- W2893359832 title "Identification of key gene pathways and coexpression networks of islets in human type 2 diabetes" @default.
- W2893359832 cites W1533942137 @default.
- W2893359832 cites W157071333 @default.
- W2893359832 cites W1943720579 @default.
- W2893359832 cites W1966327575 @default.
- W2893359832 cites W1979892459 @default.
- W2893359832 cites W1998376620 @default.
- W2893359832 cites W2002365657 @default.
- W2893359832 cites W2015646374 @default.
- W2893359832 cites W2018838463 @default.
- W2893359832 cites W2018863236 @default.
- W2893359832 cites W2022781977 @default.
- W2893359832 cites W2025447674 @default.
- W2893359832 cites W2031213748 @default.
- W2893359832 cites W2037266625 @default.
- W2893359832 cites W2038460368 @default.
- W2893359832 cites W2046438754 @default.
- W2893359832 cites W2061846490 @default.
- W2893359832 cites W2073382153 @default.
- W2893359832 cites W2095365870 @default.
- W2893359832 cites W2100330980 @default.
- W2893359832 cites W2105153491 @default.
- W2893359832 cites W2118258530 @default.
- W2893359832 cites W2134829538 @default.
- W2893359832 cites W2135902632 @default.
- W2893359832 cites W2143129697 @default.
- W2893359832 cites W2150367899 @default.
- W2893359832 cites W2152429535 @default.
- W2893359832 cites W2156178288 @default.
- W2893359832 cites W2158217645 @default.
- W2893359832 cites W2161466889 @default.
- W2893359832 cites W2168261002 @default.
- W2893359832 cites W2168992353 @default.
- W2893359832 cites W2177538943 @default.
- W2893359832 cites W2199891677 @default.
- W2893359832 cites W2253499124 @default.
- W2893359832 cites W2394653943 @default.
- W2893359832 cites W2469491796 @default.
- W2893359832 cites W2473775538 @default.
- W2893359832 cites W2512392388 @default.
- W2893359832 cites W2566820606 @default.
- W2893359832 cites W2593478843 @default.
- W2893359832 cites W2610300442 @default.
- W2893359832 cites W2775091944 @default.
- W2893359832 doi "https://doi.org/10.2147/dmso.s178894" @default.
- W2893359832 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6167975" @default.
- W2893359832 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30319280" @default.
- W2893359832 hasPublicationYear "2018" @default.
- W2893359832 type Work @default.
- W2893359832 sameAs 2893359832 @default.
- W2893359832 citedByCount "10" @default.
- W2893359832 countsByYear W28933598322019 @default.
- W2893359832 countsByYear W28933598322020 @default.
- W2893359832 countsByYear W28933598322021 @default.
- W2893359832 countsByYear W28933598322022 @default.
- W2893359832 crossrefType "journal-article" @default.
- W2893359832 hasAuthorship W2893359832A5001539467 @default.
- W2893359832 hasAuthorship W2893359832A5008140646 @default.
- W2893359832 hasAuthorship W2893359832A5023513530 @default.
- W2893359832 hasAuthorship W2893359832A5054844539 @default.
- W2893359832 hasAuthorship W2893359832A5067215693 @default.
- W2893359832 hasBestOaLocation W28933598321 @default.
- W2893359832 hasConcept C104317684 @default.
- W2893359832 hasConcept C116834253 @default.
- W2893359832 hasConcept C134018914 @default.
- W2893359832 hasConcept C150194340 @default.
- W2893359832 hasConcept C152724338 @default.
- W2893359832 hasConcept C2777180221 @default.
- W2893359832 hasConcept C2987395477 @default.
- W2893359832 hasConcept C54355233 @default.
- W2893359832 hasConcept C555293320 @default.
- W2893359832 hasConcept C59822182 @default.
- W2893359832 hasConcept C60644358 @default.
- W2893359832 hasConcept C62478195 @default.
- W2893359832 hasConcept C70721500 @default.
- W2893359832 hasConcept C86803240 @default.
- W2893359832 hasConcept C9927688 @default.
- W2893359832 hasConceptScore W2893359832C104317684 @default.
- W2893359832 hasConceptScore W2893359832C116834253 @default.
- W2893359832 hasConceptScore W2893359832C134018914 @default.
- W2893359832 hasConceptScore W2893359832C150194340 @default.
- W2893359832 hasConceptScore W2893359832C152724338 @default.
- W2893359832 hasConceptScore W2893359832C2777180221 @default.
- W2893359832 hasConceptScore W2893359832C2987395477 @default.
- W2893359832 hasConceptScore W2893359832C54355233 @default.
- W2893359832 hasConceptScore W2893359832C555293320 @default.
- W2893359832 hasConceptScore W2893359832C59822182 @default.
- W2893359832 hasConceptScore W2893359832C60644358 @default.
- W2893359832 hasConceptScore W2893359832C62478195 @default.