Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893369953> ?p ?o ?g. }
- W2893369953 abstract "ABSTRACT New technologies have given rise to an abundance of -omics data, particularly metabolomics data. The scale of these data introduces new challenges for the interpretation and extraction of knowledge, requiring the development of new computational visualization methodologies. Here, we present a new method for the visualization of time-course metabolomics data within the context of metabolic network maps. We demonstrate the utility of this method by examining previously published data for two cellular systems—the human platelet and erythrocyte under cold storage for use in transfusion medicine. The results comprise two animated videos that allow for new insights into the metabolic state of both cell types. In the case study of the platelet metabolome during storage, the new visualization technique elucidates a nicotinamide accumulation which mirrors that of hypoxanthine and might, therefore, reflect similar pathway usage. This visual analysis provides a possible explanation for why the salvage reactions in purine metabolism exhibit lower activity during the first few days of the storage period. The second case study displays drastic changes in specific erythrocyte metabolite pools at different times during storage at different temperatures. In conclusion, this new visualization technique introduced in this article constitutes a well-suitable approach for large-scale network exploration and advances hypothesis generation. This method can be applied to any system with data and a metabolic map to promote visualization and understand physiology at the network level. More broadly, we hope that our approach will provide the blueprints for new visualizations of other longitudinal -omics data types. AUTHOR SUMMARY Profiling the dynamic state of a metabolic network through the use of time-course metabolomics technologies allows insights into cellular biochemistry. Interpreting these data together at the systems level provides challenges that can be addressed through the development of new visualization approaches. Here, we present a new method for the visualization of time-course metabolomics data that integrates data into an existing metabolic network map. In brief, the metabolomics data are visualized directly on a network map with dynamic elements (nodes that either change size, fill level, or color corresponding with the concentration) while the user controls the time series (i.e., which time point is being displayed) through a graphical interface. We provide short videos that illustrate the utility of this method through its application to existing data sets for the human platelet and erythrocyte. The results presented here give blueprints for the development of visualization methods for other time-course -omics data types that attempt to understand systems-level physiology." @default.
- W2893369953 created "2018-10-05" @default.
- W2893369953 creator A5005541682 @default.
- W2893369953 creator A5016497478 @default.
- W2893369953 creator A5018630423 @default.
- W2893369953 creator A5021035939 @default.
- W2893369953 creator A5026462954 @default.
- W2893369953 creator A5027894771 @default.
- W2893369953 creator A5041144137 @default.
- W2893369953 creator A5049739483 @default.
- W2893369953 creator A5050251280 @default.
- W2893369953 creator A5075454403 @default.
- W2893369953 creator A5080751595 @default.
- W2893369953 creator A5082126398 @default.
- W2893369953 date "2018-09-26" @default.
- W2893369953 modified "2023-09-26" @default.
- W2893369953 title "Visualizing metabolic network dynamics through time-series metabolomics data" @default.
- W2893369953 cites W1596838762 @default.
- W2893369953 cites W1665355332 @default.
- W2893369953 cites W1783401755 @default.
- W2893369953 cites W1974575979 @default.
- W2893369953 cites W1983202741 @default.
- W2893369953 cites W1997062226 @default.
- W2893369953 cites W2023098599 @default.
- W2893369953 cites W2038264484 @default.
- W2893369953 cites W2040676413 @default.
- W2893369953 cites W2045266982 @default.
- W2893369953 cites W2067520432 @default.
- W2893369953 cites W2068146784 @default.
- W2893369953 cites W2068586234 @default.
- W2893369953 cites W2069157810 @default.
- W2893369953 cites W2096908543 @default.
- W2893369953 cites W2117278695 @default.
- W2893369953 cites W2130674027 @default.
- W2893369953 cites W2138326194 @default.
- W2893369953 cites W2145957155 @default.
- W2893369953 cites W2153490111 @default.
- W2893369953 cites W2154717205 @default.
- W2893369953 cites W2155142785 @default.
- W2893369953 cites W2159675211 @default.
- W2893369953 cites W2194318288 @default.
- W2893369953 cites W2466950654 @default.
- W2893369953 cites W2497303707 @default.
- W2893369953 cites W2594933406 @default.
- W2893369953 cites W2596583406 @default.
- W2893369953 cites W2761502649 @default.
- W2893369953 cites W2763014033 @default.
- W2893369953 cites W2766399257 @default.
- W2893369953 cites W2789128799 @default.
- W2893369953 cites W2791231307 @default.
- W2893369953 cites W2794554641 @default.
- W2893369953 cites W2962889697 @default.
- W2893369953 cites W4242372420 @default.
- W2893369953 doi "https://doi.org/10.1101/426106" @default.
- W2893369953 hasPublicationYear "2018" @default.
- W2893369953 type Work @default.
- W2893369953 sameAs 2893369953 @default.
- W2893369953 citedByCount "0" @default.
- W2893369953 crossrefType "posted-content" @default.
- W2893369953 hasAuthorship W2893369953A5005541682 @default.
- W2893369953 hasAuthorship W2893369953A5016497478 @default.
- W2893369953 hasAuthorship W2893369953A5018630423 @default.
- W2893369953 hasAuthorship W2893369953A5021035939 @default.
- W2893369953 hasAuthorship W2893369953A5026462954 @default.
- W2893369953 hasAuthorship W2893369953A5027894771 @default.
- W2893369953 hasAuthorship W2893369953A5041144137 @default.
- W2893369953 hasAuthorship W2893369953A5049739483 @default.
- W2893369953 hasAuthorship W2893369953A5050251280 @default.
- W2893369953 hasAuthorship W2893369953A5075454403 @default.
- W2893369953 hasAuthorship W2893369953A5080751595 @default.
- W2893369953 hasAuthorship W2893369953A5082126398 @default.
- W2893369953 hasBestOaLocation W28933699531 @default.
- W2893369953 hasConcept C101810790 @default.
- W2893369953 hasConcept C124101348 @default.
- W2893369953 hasConcept C127413603 @default.
- W2893369953 hasConcept C135870905 @default.
- W2893369953 hasConcept C151730666 @default.
- W2893369953 hasConcept C155911762 @default.
- W2893369953 hasConcept C172367668 @default.
- W2893369953 hasConcept C21565614 @default.
- W2893369953 hasConcept C2522767166 @default.
- W2893369953 hasConcept C2779343474 @default.
- W2893369953 hasConcept C36464697 @default.
- W2893369953 hasConcept C41008148 @default.
- W2893369953 hasConcept C60644358 @default.
- W2893369953 hasConcept C70721500 @default.
- W2893369953 hasConcept C78519656 @default.
- W2893369953 hasConcept C86803240 @default.
- W2893369953 hasConceptScore W2893369953C101810790 @default.
- W2893369953 hasConceptScore W2893369953C124101348 @default.
- W2893369953 hasConceptScore W2893369953C127413603 @default.
- W2893369953 hasConceptScore W2893369953C135870905 @default.
- W2893369953 hasConceptScore W2893369953C151730666 @default.
- W2893369953 hasConceptScore W2893369953C155911762 @default.
- W2893369953 hasConceptScore W2893369953C172367668 @default.
- W2893369953 hasConceptScore W2893369953C21565614 @default.
- W2893369953 hasConceptScore W2893369953C2522767166 @default.
- W2893369953 hasConceptScore W2893369953C2779343474 @default.
- W2893369953 hasConceptScore W2893369953C36464697 @default.
- W2893369953 hasConceptScore W2893369953C41008148 @default.