Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893373509> ?p ?o ?g. }
- W2893373509 endingPage "17802" @default.
- W2893373509 startingPage "17792" @default.
- W2893373509 abstract "In addition to unwinding double-stranded nucleic acids, helicase activity can also unfold noncanonical structures such as G-quadruplexes. We previously characterized Pif1 helicase catalyzed unfolding of parallel G-quadruplex DNA. Here we characterized unfolding of the telomeric G-quadruplex, which can fold into antiparallel and mixed hybrid structures and found significant differences. Telomeric DNA sequences are unfolded more readily than the parallel quadruplex formed by the c-MYC promoter in K+. Furthermore, we found that under conditions in which the telomeric quadruplex is less stable, such as in Na+, Pif1 traps thermally melted quadruplexes in the absence of ATP, leading to the appearance of increased product formation under conditions in which the enzyme is preincubated with the substrate. Stable telomeric G-quadruplex structures were unfolded in a stepwise manner at a rate slower than that of duplex DNA unwinding; however, the slower dissociation from G-quadruplexes compared with duplexes allowed the helicase to traverse more nucleotides than on duplexes. Consistent with this, the rate of ATP hydrolysis on the telomeric quadruplex DNA was reduced relative to that on single-stranded DNA (ssDNA), but less quadruplex DNA was needed to saturate ATPase activity. Under single-cycle conditions, telomeric quadruplex was unfolded by Pif1, but for the c-MYC quadruplex, unfolding required multiple helicase molecules loaded onto the adjacent ssDNA. Our findings illustrate that Pif1-catalyzed unfolding of G-quadruplex DNA is highly dependent on the specific sequence and the conditions of the reaction, including both the monovalent cation and the order of addition. In addition to unwinding double-stranded nucleic acids, helicase activity can also unfold noncanonical structures such as G-quadruplexes. We previously characterized Pif1 helicase catalyzed unfolding of parallel G-quadruplex DNA. Here we characterized unfolding of the telomeric G-quadruplex, which can fold into antiparallel and mixed hybrid structures and found significant differences. Telomeric DNA sequences are unfolded more readily than the parallel quadruplex formed by the c-MYC promoter in K+. Furthermore, we found that under conditions in which the telomeric quadruplex is less stable, such as in Na+, Pif1 traps thermally melted quadruplexes in the absence of ATP, leading to the appearance of increased product formation under conditions in which the enzyme is preincubated with the substrate. Stable telomeric G-quadruplex structures were unfolded in a stepwise manner at a rate slower than that of duplex DNA unwinding; however, the slower dissociation from G-quadruplexes compared with duplexes allowed the helicase to traverse more nucleotides than on duplexes. Consistent with this, the rate of ATP hydrolysis on the telomeric quadruplex DNA was reduced relative to that on single-stranded DNA (ssDNA), but less quadruplex DNA was needed to saturate ATPase activity. Under single-cycle conditions, telomeric quadruplex was unfolded by Pif1, but for the c-MYC quadruplex, unfolding required multiple helicase molecules loaded onto the adjacent ssDNA. Our findings illustrate that Pif1-catalyzed unfolding of G-quadruplex DNA is highly dependent on the specific sequence and the conditions of the reaction, including both the monovalent cation and the order of addition." @default.
- W2893373509 created "2018-10-05" @default.
- W2893373509 creator A5008476359 @default.
- W2893373509 creator A5036157209 @default.
- W2893373509 creator A5052449333 @default.
- W2893373509 date "2018-11-01" @default.
- W2893373509 modified "2023-10-10" @default.
- W2893373509 title "Pif1 helicase unfolding of G-quadruplex DNA is highly dependent on sequence and reaction conditions" @default.
- W2893373509 cites W1642366110 @default.
- W2893373509 cites W1788309009 @default.
- W2893373509 cites W1914649288 @default.
- W2893373509 cites W1963485674 @default.
- W2893373509 cites W1964002611 @default.
- W2893373509 cites W1964068975 @default.
- W2893373509 cites W1965331353 @default.
- W2893373509 cites W1968493165 @default.
- W2893373509 cites W1969965681 @default.
- W2893373509 cites W1973687143 @default.
- W2893373509 cites W1974067967 @default.
- W2893373509 cites W197507937 @default.
- W2893373509 cites W1976933659 @default.
- W2893373509 cites W1982418584 @default.
- W2893373509 cites W1986881948 @default.
- W2893373509 cites W1990635146 @default.
- W2893373509 cites W1991616035 @default.
- W2893373509 cites W1991703417 @default.
- W2893373509 cites W1991754576 @default.
- W2893373509 cites W1998232368 @default.
- W2893373509 cites W2003802084 @default.
- W2893373509 cites W2004099247 @default.
- W2893373509 cites W2008034397 @default.
- W2893373509 cites W2008120871 @default.
- W2893373509 cites W2010595848 @default.
- W2893373509 cites W2013004673 @default.
- W2893373509 cites W2013588275 @default.
- W2893373509 cites W2019146077 @default.
- W2893373509 cites W2027657574 @default.
- W2893373509 cites W2035667154 @default.
- W2893373509 cites W2035832119 @default.
- W2893373509 cites W2039857324 @default.
- W2893373509 cites W2042374693 @default.
- W2893373509 cites W2056072994 @default.
- W2893373509 cites W2056463455 @default.
- W2893373509 cites W2058384455 @default.
- W2893373509 cites W2064809185 @default.
- W2893373509 cites W2066235091 @default.
- W2893373509 cites W2067133520 @default.
- W2893373509 cites W2077570881 @default.
- W2893373509 cites W2078024052 @default.
- W2893373509 cites W2079324836 @default.
- W2893373509 cites W2083703501 @default.
- W2893373509 cites W2088561792 @default.
- W2893373509 cites W2088635998 @default.
- W2893373509 cites W2093320042 @default.
- W2893373509 cites W2095111293 @default.
- W2893373509 cites W2100310707 @default.
- W2893373509 cites W2100516380 @default.
- W2893373509 cites W2100966371 @default.
- W2893373509 cites W2104977828 @default.
- W2893373509 cites W2108763751 @default.
- W2893373509 cites W2115185917 @default.
- W2893373509 cites W2122475097 @default.
- W2893373509 cites W2122571070 @default.
- W2893373509 cites W2132070326 @default.
- W2893373509 cites W2137500638 @default.
- W2893373509 cites W2138222569 @default.
- W2893373509 cites W2144414286 @default.
- W2893373509 cites W2150285221 @default.
- W2893373509 cites W2154402778 @default.
- W2893373509 cites W2155773930 @default.
- W2893373509 cites W2158737337 @default.
- W2893373509 cites W2166965022 @default.
- W2893373509 cites W2171928459 @default.
- W2893373509 cites W2226186365 @default.
- W2893373509 cites W2257749782 @default.
- W2893373509 cites W2269948695 @default.
- W2893373509 cites W2275411324 @default.
- W2893373509 cites W2276925202 @default.
- W2893373509 cites W2283427570 @default.
- W2893373509 cites W2296534952 @default.
- W2893373509 cites W2322627760 @default.
- W2893373509 cites W2327487352 @default.
- W2893373509 cites W2398139621 @default.
- W2893373509 cites W2483606242 @default.
- W2893373509 cites W2499864401 @default.
- W2893373509 cites W2537246643 @default.
- W2893373509 cites W2565773396 @default.
- W2893373509 cites W2590327834 @default.
- W2893373509 cites W2606203505 @default.
- W2893373509 cites W2754763401 @default.
- W2893373509 cites W2757691983 @default.
- W2893373509 cites W2771080734 @default.
- W2893373509 cites W2779715470 @default.
- W2893373509 cites W2808136147 @default.
- W2893373509 cites W4230284059 @default.
- W2893373509 doi "https://doi.org/10.1074/jbc.ra118.004499" @default.
- W2893373509 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6240867" @default.
- W2893373509 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30257865" @default.