Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893381601> ?p ?o ?g. }
- W2893381601 endingPage "57825" @default.
- W2893381601 startingPage "57814" @default.
- W2893381601 abstract "The success of robotic, such as UGV systems, largely benefits from the fundamental capability of autonomously finding collision-free path(s) to commit mobile tasks in routinely rough and complicated environments. Optimization of navigation under such circumstance has long been an open problem: 1) to meet the critical requirements of this task typically including the shortest distance and smoothness and 2) more challengingly, to enable a general solution to track the optimal path in real-time outdoor applications. Aiming at the problem, this study develops a two-tier approach to navigation optimization in terms of path planning and tracking. First, a “rope”model has been designed to mimic the deformation of a path in axial direction under external force and the fixedness of the radial plane to contain a UGV in a collision-free space. Second, a deterministic policy gradient (DPG) algorithm has been trained efficiently on abstracted structures of an arbitrarily derived “rope”to model the controller for tracking the optimal path. The learned policy can be generalized to a variety of scenarios. Experiments have been performed over complicated environments of different types. The results indicate that: 1) the rope model helps in minimizing distance and enhancing smoothness of the path, while guarantees the clearance; 2) the DPG can be modeled quickly (in a couple of minutes on an office desktop) and the model can apply to environments of increasing complexity under the circumstance of external disturbances without the need for tuning parameters; and 3) the DPG-based controller can autonomously adjust the UGV to follow the correct path free of risks by itself." @default.
- W2893381601 created "2018-10-05" @default.
- W2893381601 creator A5031378660 @default.
- W2893381601 creator A5047661937 @default.
- W2893381601 creator A5071294239 @default.
- W2893381601 creator A5078465675 @default.
- W2893381601 date "2018-01-01" @default.
- W2893381601 modified "2023-10-03" @default.
- W2893381601 title "UGV Navigation Optimization Aided by Reinforcement Learning-Based Path Tracking" @default.
- W2893381601 cites W1591375184 @default.
- W2893381601 cites W1993999483 @default.
- W2893381601 cites W2017995647 @default.
- W2893381601 cites W2042795879 @default.
- W2893381601 cites W2044792947 @default.
- W2893381601 cites W2045174204 @default.
- W2893381601 cites W2086687100 @default.
- W2893381601 cites W2101554457 @default.
- W2893381601 cites W2113286054 @default.
- W2893381601 cites W2114652055 @default.
- W2893381601 cites W2116966230 @default.
- W2893381601 cites W2119112357 @default.
- W2893381601 cites W2132602063 @default.
- W2893381601 cites W2142224528 @default.
- W2893381601 cites W2143102370 @default.
- W2893381601 cites W2145113795 @default.
- W2893381601 cites W2145339207 @default.
- W2893381601 cites W2145602088 @default.
- W2893381601 cites W2150922432 @default.
- W2893381601 cites W2152536965 @default.
- W2893381601 cites W2161532993 @default.
- W2893381601 cites W2161819990 @default.
- W2893381601 cites W2163178194 @default.
- W2893381601 cites W2163852435 @default.
- W2893381601 cites W2291041537 @default.
- W2893381601 cites W2343090116 @default.
- W2893381601 cites W2575705757 @default.
- W2893381601 cites W2604760770 @default.
- W2893381601 cites W2612102354 @default.
- W2893381601 cites W2737856893 @default.
- W2893381601 cites W2770741853 @default.
- W2893381601 cites W2919115771 @default.
- W2893381601 cites W2963428623 @default.
- W2893381601 cites W4243385754 @default.
- W2893381601 cites W4300892751 @default.
- W2893381601 doi "https://doi.org/10.1109/access.2018.2872751" @default.
- W2893381601 hasPublicationYear "2018" @default.
- W2893381601 type Work @default.
- W2893381601 sameAs 2893381601 @default.
- W2893381601 citedByCount "18" @default.
- W2893381601 countsByYear W28933816012019 @default.
- W2893381601 countsByYear W28933816012020 @default.
- W2893381601 countsByYear W28933816012021 @default.
- W2893381601 countsByYear W28933816012022 @default.
- W2893381601 countsByYear W28933816012023 @default.
- W2893381601 crossrefType "journal-article" @default.
- W2893381601 hasAuthorship W2893381601A5031378660 @default.
- W2893381601 hasAuthorship W2893381601A5047661937 @default.
- W2893381601 hasAuthorship W2893381601A5071294239 @default.
- W2893381601 hasAuthorship W2893381601A5078465675 @default.
- W2893381601 hasBestOaLocation W28933816011 @default.
- W2893381601 hasConcept C102634674 @default.
- W2893381601 hasConcept C11413529 @default.
- W2893381601 hasConcept C126255220 @default.
- W2893381601 hasConcept C132525143 @default.
- W2893381601 hasConcept C134306372 @default.
- W2893381601 hasConcept C154945302 @default.
- W2893381601 hasConcept C162269090 @default.
- W2893381601 hasConcept C199360897 @default.
- W2893381601 hasConcept C203479927 @default.
- W2893381601 hasConcept C22590252 @default.
- W2893381601 hasConcept C2777735758 @default.
- W2893381601 hasConcept C33923547 @default.
- W2893381601 hasConcept C41008148 @default.
- W2893381601 hasConcept C44154836 @default.
- W2893381601 hasConcept C6557445 @default.
- W2893381601 hasConcept C79403827 @default.
- W2893381601 hasConcept C80444323 @default.
- W2893381601 hasConcept C81074085 @default.
- W2893381601 hasConcept C86803240 @default.
- W2893381601 hasConcept C90509273 @default.
- W2893381601 hasConcept C97541855 @default.
- W2893381601 hasConceptScore W2893381601C102634674 @default.
- W2893381601 hasConceptScore W2893381601C11413529 @default.
- W2893381601 hasConceptScore W2893381601C126255220 @default.
- W2893381601 hasConceptScore W2893381601C132525143 @default.
- W2893381601 hasConceptScore W2893381601C134306372 @default.
- W2893381601 hasConceptScore W2893381601C154945302 @default.
- W2893381601 hasConceptScore W2893381601C162269090 @default.
- W2893381601 hasConceptScore W2893381601C199360897 @default.
- W2893381601 hasConceptScore W2893381601C203479927 @default.
- W2893381601 hasConceptScore W2893381601C22590252 @default.
- W2893381601 hasConceptScore W2893381601C2777735758 @default.
- W2893381601 hasConceptScore W2893381601C33923547 @default.
- W2893381601 hasConceptScore W2893381601C41008148 @default.
- W2893381601 hasConceptScore W2893381601C44154836 @default.
- W2893381601 hasConceptScore W2893381601C6557445 @default.
- W2893381601 hasConceptScore W2893381601C79403827 @default.
- W2893381601 hasConceptScore W2893381601C80444323 @default.