Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893388964> ?p ?o ?g. }
- W2893388964 endingPage "545" @default.
- W2893388964 startingPage "533" @default.
- W2893388964 abstract "Abstract Dictionary learning (DL) methods are widely used for pattern recognition in recent years. In most DL methods, the l 1 norm is employed to promote sparsity of the coding. However, the usage of the sparse coding based methods is limited since solving the l 1 based sparse coding is very time-consuming. In this paper, a novel orthogonal collaborative dictionary learning (CDL) method is proposed for accurate and efficient face classification. In this method, several class-specific dictionaries and one common dictionary are learned jointly from the training data, where the class-specific dictionaries are used to model the appearance of the subjects and the common dictionary is used to model the facial variations. To learn these dictionaries, we introduce an orthogonality promoting term to encourage the facial variations to be independent of the appearance as much as possible, and introduce a scatter constraint term to remove the variations in the class-specific dictionaries. Since CDL can derive analytical solutions for both code learning and dictionary updating, it is much more efficient than many other DL methods in terms of training and classification. Experiments conducted on seven face databases show that CDL outperforms many state-of-the-art DL methods and coding methods in both accuracy and efficiency." @default.
- W2893388964 created "2018-10-05" @default.
- W2893388964 creator A5019320923 @default.
- W2893388964 creator A5059912382 @default.
- W2893388964 creator A5085185712 @default.
- W2893388964 creator A5087392644 @default.
- W2893388964 creator A5090531329 @default.
- W2893388964 date "2019-01-01" @default.
- W2893388964 modified "2023-10-06" @default.
- W2893388964 title "Novel orthogonal based collaborative dictionary learning for efficient face recognition" @default.
- W2893388964 cites W129703402 @default.
- W2893388964 cites W131155259 @default.
- W2893388964 cites W1904464160 @default.
- W2893388964 cites W1963932623 @default.
- W2893388964 cites W1972715665 @default.
- W2893388964 cites W1975815261 @default.
- W2893388964 cites W1976293824 @default.
- W2893388964 cites W1982405594 @default.
- W2893388964 cites W1983008863 @default.
- W2893388964 cites W1992405901 @default.
- W2893388964 cites W1997011019 @default.
- W2893388964 cites W2002670936 @default.
- W2893388964 cites W2005876975 @default.
- W2893388964 cites W2010099812 @default.
- W2893388964 cites W2019972236 @default.
- W2893388964 cites W2027805700 @default.
- W2893388964 cites W2027922120 @default.
- W2893388964 cites W2030754587 @default.
- W2893388964 cites W2032768707 @default.
- W2893388964 cites W2043006496 @default.
- W2893388964 cites W2045079989 @default.
- W2893388964 cites W2050834445 @default.
- W2893388964 cites W2061572659 @default.
- W2893388964 cites W2063978378 @default.
- W2893388964 cites W2080296254 @default.
- W2893388964 cites W2083436148 @default.
- W2893388964 cites W2084716923 @default.
- W2893388964 cites W2085400714 @default.
- W2893388964 cites W2088843485 @default.
- W2893388964 cites W2097486709 @default.
- W2893388964 cites W2100556411 @default.
- W2893388964 cites W2102460275 @default.
- W2893388964 cites W2108024382 @default.
- W2893388964 cites W2118297240 @default.
- W2893388964 cites W2121058967 @default.
- W2893388964 cites W2123921160 @default.
- W2893388964 cites W2125874614 @default.
- W2893388964 cites W2126607811 @default.
- W2893388964 cites W2129812935 @default.
- W2893388964 cites W2132467081 @default.
- W2893388964 cites W2138019504 @default.
- W2893388964 cites W2138451337 @default.
- W2893388964 cites W2139451504 @default.
- W2893388964 cites W2139596361 @default.
- W2893388964 cites W2140245639 @default.
- W2893388964 cites W2150409012 @default.
- W2893388964 cites W2157785665 @default.
- W2893388964 cites W2160547390 @default.
- W2893388964 cites W2171534739 @default.
- W2893388964 cites W2662998588 @default.
- W2893388964 cites W2065030431 @default.
- W2893388964 doi "https://doi.org/10.1016/j.knosys.2018.09.014" @default.
- W2893388964 hasPublicationYear "2019" @default.
- W2893388964 type Work @default.
- W2893388964 sameAs 2893388964 @default.
- W2893388964 citedByCount "9" @default.
- W2893388964 countsByYear W28933889642019 @default.
- W2893388964 countsByYear W28933889642020 @default.
- W2893388964 countsByYear W28933889642021 @default.
- W2893388964 countsByYear W28933889642022 @default.
- W2893388964 crossrefType "journal-article" @default.
- W2893388964 hasAuthorship W2893388964A5019320923 @default.
- W2893388964 hasAuthorship W2893388964A5059912382 @default.
- W2893388964 hasAuthorship W2893388964A5085185712 @default.
- W2893388964 hasAuthorship W2893388964A5087392644 @default.
- W2893388964 hasAuthorship W2893388964A5090531329 @default.
- W2893388964 hasConcept C107457646 @default.
- W2893388964 hasConcept C119857082 @default.
- W2893388964 hasConcept C124066611 @default.
- W2893388964 hasConcept C144024400 @default.
- W2893388964 hasConcept C153180895 @default.
- W2893388964 hasConcept C154945302 @default.
- W2893388964 hasConcept C2779304628 @default.
- W2893388964 hasConcept C28490314 @default.
- W2893388964 hasConcept C2988886741 @default.
- W2893388964 hasConcept C31510193 @default.
- W2893388964 hasConcept C36289849 @default.
- W2893388964 hasConcept C41008148 @default.
- W2893388964 hasConceptScore W2893388964C107457646 @default.
- W2893388964 hasConceptScore W2893388964C119857082 @default.
- W2893388964 hasConceptScore W2893388964C124066611 @default.
- W2893388964 hasConceptScore W2893388964C144024400 @default.
- W2893388964 hasConceptScore W2893388964C153180895 @default.
- W2893388964 hasConceptScore W2893388964C154945302 @default.
- W2893388964 hasConceptScore W2893388964C2779304628 @default.
- W2893388964 hasConceptScore W2893388964C28490314 @default.
- W2893388964 hasConceptScore W2893388964C2988886741 @default.
- W2893388964 hasConceptScore W2893388964C31510193 @default.