Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893389483> ?p ?o ?g. }
- W2893389483 endingPage "183" @default.
- W2893389483 startingPage "169" @default.
- W2893389483 abstract "The development and application of nanofibres requires a thorough understanding of the mechanical properties on a single fibre level including respective modelling tools for precise fibre analysis. This work presents a mechanical and morphological study of poly-l-lactide nanofibres developed by needleless electrospinning. Atomic force microscopy (AFM) and micromechanical testing (MMT) were used to characterise the mechanical response of the fibres within a diameter range of 200–1400 nm. Young’s moduli E determined by means of both methods are in sound agreement and show a strong increase for thinner fibres below a critical diameter of 800 nm. Similar increasing trends for yield stress and hardening modulus were measured by MMT. Finite element analyses show that the common practice of modelling three-point bending tests with either double supported or double clamped beams is prone to significant bias in the determined elastic properties, and that the latter is a good approximation only for small diameters. Therefore, an analytical formula based on intermediate boundary conditions is proposed that is valid for the whole tested range of fibre diameters, providing a consistently low error in axial Young’s modulus below 10%. The analysis of fibre morphology by differential scanning calorimetry and 2D wide-angle X-ray scattering revealed increasing polymer chains alignment in the amorphous phase and higher crystallinity of fibres for decreasing diameter. The combination of these observations with the mechanical characterisation suggests a linear relationship between Young’s modulus and both crystallinity and molecular orientation in the amorphous phase. Fibrous membranes have rapidly growing use in various applications, each of which comes with specific property requirements. However, the development and production of nanofibre membranes with dedicated mechanical properties is challenging, in particular with techniques suitable for industrial scales such as needleless electrospinning. It is therefore a key step to understand the mechanical and structural characteristics of single nanofibres developed in this process, and to this end, the present work presents changes of internal fibre structure and mechanical properties with diameter, based on dedicated models. Special attention was given to the commonly used models for analyzing Young’s modulus of single nanofibers in three-point bending tests, which are shown to be prone to large errors, and an improved robust approach is proposed." @default.
- W2893389483 created "2018-10-05" @default.
- W2893389483 creator A5000598046 @default.
- W2893389483 creator A5000779514 @default.
- W2893389483 creator A5009707035 @default.
- W2893389483 creator A5017955440 @default.
- W2893389483 creator A5024746686 @default.
- W2893389483 creator A5027335171 @default.
- W2893389483 creator A5034361859 @default.
- W2893389483 creator A5055136832 @default.
- W2893389483 creator A5058292733 @default.
- W2893389483 creator A5068821613 @default.
- W2893389483 creator A5069251585 @default.
- W2893389483 date "2018-11-01" @default.
- W2893389483 modified "2023-10-15" @default.
- W2893389483 title "Correlating diameter, mechanical and structural properties of poly(l-lactide) fibres from needleless electrospinning" @default.
- W2893389483 cites W1228998594 @default.
- W2893389483 cites W1603587465 @default.
- W2893389483 cites W1671765072 @default.
- W2893389483 cites W1928221274 @default.
- W2893389483 cites W1966202034 @default.
- W2893389483 cites W1974262428 @default.
- W2893389483 cites W1975560958 @default.
- W2893389483 cites W1986386374 @default.
- W2893389483 cites W1990235192 @default.
- W2893389483 cites W1993094077 @default.
- W2893389483 cites W2002022973 @default.
- W2893389483 cites W2008978339 @default.
- W2893389483 cites W2013328004 @default.
- W2893389483 cites W2017222033 @default.
- W2893389483 cites W2024839237 @default.
- W2893389483 cites W2027962791 @default.
- W2893389483 cites W2031874676 @default.
- W2893389483 cites W2036162008 @default.
- W2893389483 cites W2040296902 @default.
- W2893389483 cites W2055463104 @default.
- W2893389483 cites W2055762937 @default.
- W2893389483 cites W2057775811 @default.
- W2893389483 cites W2059978051 @default.
- W2893389483 cites W2065883812 @default.
- W2893389483 cites W2066118504 @default.
- W2893389483 cites W2068818708 @default.
- W2893389483 cites W2071279441 @default.
- W2893389483 cites W2071468233 @default.
- W2893389483 cites W2082171057 @default.
- W2893389483 cites W2083952515 @default.
- W2893389483 cites W2084200408 @default.
- W2893389483 cites W2084726366 @default.
- W2893389483 cites W2085584953 @default.
- W2893389483 cites W2090526800 @default.
- W2893389483 cites W2092109024 @default.
- W2893389483 cites W2099540110 @default.
- W2893389483 cites W2110664291 @default.
- W2893389483 cites W2129929316 @default.
- W2893389483 cites W2135101579 @default.
- W2893389483 cites W2142155040 @default.
- W2893389483 cites W2169086666 @default.
- W2893389483 cites W2180156466 @default.
- W2893389483 cites W2294662571 @default.
- W2893389483 cites W2322433245 @default.
- W2893389483 cites W2333914580 @default.
- W2893389483 cites W2410096055 @default.
- W2893389483 cites W2512263236 @default.
- W2893389483 cites W2519981132 @default.
- W2893389483 cites W2547699807 @default.
- W2893389483 cites W2594322169 @default.
- W2893389483 cites W2609173676 @default.
- W2893389483 cites W2750704556 @default.
- W2893389483 cites W2762134447 @default.
- W2893389483 doi "https://doi.org/10.1016/j.actbio.2018.09.055" @default.
- W2893389483 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30273744" @default.
- W2893389483 hasPublicationYear "2018" @default.
- W2893389483 type Work @default.
- W2893389483 sameAs 2893389483 @default.
- W2893389483 citedByCount "40" @default.
- W2893389483 countsByYear W28933894832019 @default.
- W2893389483 countsByYear W28933894832020 @default.
- W2893389483 countsByYear W28933894832021 @default.
- W2893389483 countsByYear W28933894832022 @default.
- W2893389483 countsByYear W28933894832023 @default.
- W2893389483 crossrefType "journal-article" @default.
- W2893389483 hasAuthorship W2893389483A5000598046 @default.
- W2893389483 hasAuthorship W2893389483A5000779514 @default.
- W2893389483 hasAuthorship W2893389483A5009707035 @default.
- W2893389483 hasAuthorship W2893389483A5017955440 @default.
- W2893389483 hasAuthorship W2893389483A5024746686 @default.
- W2893389483 hasAuthorship W2893389483A5027335171 @default.
- W2893389483 hasAuthorship W2893389483A5034361859 @default.
- W2893389483 hasAuthorship W2893389483A5055136832 @default.
- W2893389483 hasAuthorship W2893389483A5058292733 @default.
- W2893389483 hasAuthorship W2893389483A5068821613 @default.
- W2893389483 hasAuthorship W2893389483A5069251585 @default.
- W2893389483 hasBestOaLocation W28933894831 @default.
- W2893389483 hasConcept C112950240 @default.
- W2893389483 hasConcept C121332964 @default.
- W2893389483 hasConcept C144796933 @default.
- W2893389483 hasConcept C159985019 @default.
- W2893389483 hasConcept C185592680 @default.