Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893396084> ?p ?o ?g. }
- W2893396084 endingPage "59" @default.
- W2893396084 startingPage "50" @default.
- W2893396084 abstract "Anaphylaxis is a life-threatening allergic reaction that occurs suddenly after contact with an allergen. Epidemiological studies about anaphylaxis are very important in planning and evaluating new strategies that prevent this reaction, but also in providing a guide to the treatment of patients who have just suffered an anaphylactic reaction. Electronic Medical Records (EMR) are one of the most effective and richest sources for the epidemiology of anaphylaxis, because they provide a low-cost way of accessing rich longitudinal data on large populations. However, a negative aspect is that researchers have to manually review a huge amount of information, which is a very costly and highly time consuming task. Therefore, our goal is to explore different machine learning techniques to process Big Data EMR, lessening the needed efforts for performing epidemiological studies about anaphylaxis. In particular, we aim to study the incidence of anaphylaxis by the automatic classification of EMR. To do this, we employ the most widely used and efficient classifiers in text classification and compare different document representations, which range from well-known methods such as Bag Of Words (BoW) to more recent ones based on word embedding models, such as a simple average of word embeddings or a bag of centroids of word embeddings. Because the identification of anaphylaxis cases in EMR is a class-imbalanced problem (less than 1% describe anaphylaxis cases), we employ a novel undersampling technique based on clustering to balance our dataset. In addition to classical machine learning algorithms, we also use a Convolutional Neural Network (CNN) to classify our dataset. In general, experiments show that the most classifiers and representations are effective (F1 above 90%). Logistic Regression, Linear SVM, Multilayer Perceptron and Random Forest achieve an F1 around 95%, however linear methods have considerably lower training times. CNN provides slightly better performance (F1 = 95.6%)." @default.
- W2893396084 created "2018-10-05" @default.
- W2893396084 creator A5017993707 @default.
- W2893396084 creator A5020820009 @default.
- W2893396084 creator A5058065349 @default.
- W2893396084 creator A5079791321 @default.
- W2893396084 date "2018-11-01" @default.
- W2893396084 modified "2023-10-06" @default.
- W2893396084 title "Predicting of anaphylaxis in big data EMR by exploring machine learning approaches" @default.
- W2893396084 cites W1573942470 @default.
- W2893396084 cites W1965895350 @default.
- W2893396084 cites W2023450550 @default.
- W2893396084 cites W2053724458 @default.
- W2893396084 cites W2057145918 @default.
- W2893396084 cites W2059922089 @default.
- W2893396084 cites W2060758175 @default.
- W2893396084 cites W2098162425 @default.
- W2893396084 cites W2099454382 @default.
- W2893396084 cites W2110485445 @default.
- W2893396084 cites W2126734246 @default.
- W2893396084 cites W2135186741 @default.
- W2893396084 cites W2138776277 @default.
- W2893396084 cites W2140341488 @default.
- W2893396084 cites W2146089916 @default.
- W2893396084 cites W2148143831 @default.
- W2893396084 cites W2150593711 @default.
- W2893396084 cites W2152035852 @default.
- W2893396084 cites W2159583324 @default.
- W2893396084 cites W2165612380 @default.
- W2893396084 cites W2168565044 @default.
- W2893396084 cites W2250539671 @default.
- W2893396084 cites W2251771443 @default.
- W2893396084 cites W2265846598 @default.
- W2893396084 cites W2512529927 @default.
- W2893396084 cites W2513879842 @default.
- W2893396084 cites W2611354752 @default.
- W2893396084 cites W2612634114 @default.
- W2893396084 cites W2768488789 @default.
- W2893396084 cites W2882319491 @default.
- W2893396084 cites W2890007195 @default.
- W2893396084 cites W2911964244 @default.
- W2893396084 cites W2963542836 @default.
- W2893396084 cites W2963625095 @default.
- W2893396084 cites W2964046515 @default.
- W2893396084 cites W4229746755 @default.
- W2893396084 doi "https://doi.org/10.1016/j.jbi.2018.09.012" @default.
- W2893396084 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30266231" @default.
- W2893396084 hasPublicationYear "2018" @default.
- W2893396084 type Work @default.
- W2893396084 sameAs 2893396084 @default.
- W2893396084 citedByCount "37" @default.
- W2893396084 countsByYear W28933960842018 @default.
- W2893396084 countsByYear W28933960842019 @default.
- W2893396084 countsByYear W28933960842020 @default.
- W2893396084 countsByYear W28933960842021 @default.
- W2893396084 countsByYear W28933960842022 @default.
- W2893396084 countsByYear W28933960842023 @default.
- W2893396084 crossrefType "journal-article" @default.
- W2893396084 hasAuthorship W2893396084A5017993707 @default.
- W2893396084 hasAuthorship W2893396084A5020820009 @default.
- W2893396084 hasAuthorship W2893396084A5058065349 @default.
- W2893396084 hasAuthorship W2893396084A5079791321 @default.
- W2893396084 hasConcept C119857082 @default.
- W2893396084 hasConcept C124101348 @default.
- W2893396084 hasConcept C154945302 @default.
- W2893396084 hasConcept C203014093 @default.
- W2893396084 hasConcept C207480886 @default.
- W2893396084 hasConcept C2775933838 @default.
- W2893396084 hasConcept C41008148 @default.
- W2893396084 hasConcept C71924100 @default.
- W2893396084 hasConcept C73555534 @default.
- W2893396084 hasConcept C75684735 @default.
- W2893396084 hasConcept C81363708 @default.
- W2893396084 hasConceptScore W2893396084C119857082 @default.
- W2893396084 hasConceptScore W2893396084C124101348 @default.
- W2893396084 hasConceptScore W2893396084C154945302 @default.
- W2893396084 hasConceptScore W2893396084C203014093 @default.
- W2893396084 hasConceptScore W2893396084C207480886 @default.
- W2893396084 hasConceptScore W2893396084C2775933838 @default.
- W2893396084 hasConceptScore W2893396084C41008148 @default.
- W2893396084 hasConceptScore W2893396084C71924100 @default.
- W2893396084 hasConceptScore W2893396084C73555534 @default.
- W2893396084 hasConceptScore W2893396084C75684735 @default.
- W2893396084 hasConceptScore W2893396084C81363708 @default.
- W2893396084 hasLocation W28933960841 @default.
- W2893396084 hasLocation W28933960842 @default.
- W2893396084 hasOpenAccess W2893396084 @default.
- W2893396084 hasPrimaryLocation W28933960841 @default.
- W2893396084 hasRelatedWork W1997217298 @default.
- W2893396084 hasRelatedWork W2064883676 @default.
- W2893396084 hasRelatedWork W2337926734 @default.
- W2893396084 hasRelatedWork W3014300295 @default.
- W2893396084 hasRelatedWork W3027997911 @default.
- W2893396084 hasRelatedWork W4226091590 @default.
- W2893396084 hasRelatedWork W4287776258 @default.
- W2893396084 hasRelatedWork W4293567684 @default.
- W2893396084 hasRelatedWork W4312501200 @default.
- W2893396084 hasRelatedWork W4366224123 @default.