Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893397508> ?p ?o ?g. }
- W2893397508 endingPage "56281" @default.
- W2893397508 startingPage "56269" @default.
- W2893397508 abstract "Although face recognition algorithms have been greatly successful recently, in real applications of very low-resolution (VLR) images, both super-resolution (SR) and recognition tasks are more challenging than those in high-resolution (HR) images. Given the rare discriminative information in VLR images, the one-to-many mapping relationship between HR and VLR images degrades the SR and recognition performances. In this paper, we propose a novel semi-coupled dictionary learning scheme to promote discriminative and representative abilities for face recognition and SR simultaneously by relaxing coupled dictionary learning. Specifically, we use semi-coupled locality-constrained representation to enhance the consistency between VLR and HR local manifold geometries, thereby overcoming the negative effects of one-to-many mapping. Given the learned task-oriented mapping function, we feed these discriminative features into a collaborative representation-based classifier to output their labels, and combine a locality-induced approach to hallucinate the HR images. Extensive experimental results demonstrate that the proposed approach outperforms a number of state-of-the-art face recognition and SR algorithms." @default.
- W2893397508 created "2018-10-05" @default.
- W2893397508 creator A5054275925 @default.
- W2893397508 creator A5058154161 @default.
- W2893397508 creator A5063253432 @default.
- W2893397508 creator A5070922664 @default.
- W2893397508 creator A5089404454 @default.
- W2893397508 date "2018-01-01" @default.
- W2893397508 modified "2023-10-15" @default.
- W2893397508 title "SLR: Semi-Coupled Locality Constrained Representation for Very Low Resolution Face Recognition and Super Resolution" @default.
- W2893397508 cites W1509693426 @default.
- W2893397508 cites W1885185971 @default.
- W2893397508 cites W1889464797 @default.
- W2893397508 cites W1967482855 @default.
- W2893397508 cites W1972002222 @default.
- W2893397508 cites W1972702299 @default.
- W2893397508 cites W1981341515 @default.
- W2893397508 cites W1983781364 @default.
- W2893397508 cites W1997462613 @default.
- W2893397508 cites W2007146377 @default.
- W2893397508 cites W2027325144 @default.
- W2893397508 cites W2027922120 @default.
- W2893397508 cites W2031349574 @default.
- W2893397508 cites W2043006496 @default.
- W2893397508 cites W2044655004 @default.
- W2893397508 cites W2055444136 @default.
- W2893397508 cites W2067023690 @default.
- W2893397508 cites W2071730188 @default.
- W2893397508 cites W2078301312 @default.
- W2893397508 cites W2099470017 @default.
- W2893397508 cites W2114380981 @default.
- W2893397508 cites W2118963448 @default.
- W2893397508 cites W2123133906 @default.
- W2893397508 cites W2129680231 @default.
- W2893397508 cites W2129812935 @default.
- W2893397508 cites W2132467081 @default.
- W2893397508 cites W2134262590 @default.
- W2893397508 cites W2138616927 @default.
- W2893397508 cites W2141631520 @default.
- W2893397508 cites W2144267702 @default.
- W2893397508 cites W2160021903 @default.
- W2893397508 cites W2165698076 @default.
- W2893397508 cites W2172157973 @default.
- W2893397508 cites W2242218935 @default.
- W2893397508 cites W2295477204 @default.
- W2893397508 cites W2296659146 @default.
- W2893397508 cites W2359099468 @default.
- W2893397508 cites W2461349148 @default.
- W2893397508 cites W2509704168 @default.
- W2893397508 cites W2518224564 @default.
- W2893397508 cites W2536350903 @default.
- W2893397508 cites W2559478892 @default.
- W2893397508 cites W2573724518 @default.
- W2893397508 cites W2625270925 @default.
- W2893397508 cites W2642849260 @default.
- W2893397508 cites W2751912274 @default.
- W2893397508 cites W2758730071 @default.
- W2893397508 cites W2766734582 @default.
- W2893397508 cites W2777155971 @default.
- W2893397508 cites W2790508633 @default.
- W2893397508 cites W2794277346 @default.
- W2893397508 cites W2963102887 @default.
- W2893397508 cites W2964325192 @default.
- W2893397508 cites W3016915633 @default.
- W2893397508 cites W3102431071 @default.
- W2893397508 cites W4206310440 @default.
- W2893397508 cites W4378761606 @default.
- W2893397508 doi "https://doi.org/10.1109/access.2018.2872761" @default.
- W2893397508 hasPublicationYear "2018" @default.
- W2893397508 type Work @default.
- W2893397508 sameAs 2893397508 @default.
- W2893397508 citedByCount "12" @default.
- W2893397508 countsByYear W28933975082018 @default.
- W2893397508 countsByYear W28933975082019 @default.
- W2893397508 countsByYear W28933975082020 @default.
- W2893397508 countsByYear W28933975082021 @default.
- W2893397508 countsByYear W28933975082022 @default.
- W2893397508 crossrefType "journal-article" @default.
- W2893397508 hasAuthorship W2893397508A5054275925 @default.
- W2893397508 hasAuthorship W2893397508A5058154161 @default.
- W2893397508 hasAuthorship W2893397508A5063253432 @default.
- W2893397508 hasAuthorship W2893397508A5070922664 @default.
- W2893397508 hasAuthorship W2893397508A5089404454 @default.
- W2893397508 hasBestOaLocation W28933975081 @default.
- W2893397508 hasConcept C124066611 @default.
- W2893397508 hasConcept C138885662 @default.
- W2893397508 hasConcept C144024400 @default.
- W2893397508 hasConcept C153180895 @default.
- W2893397508 hasConcept C154945302 @default.
- W2893397508 hasConcept C17744445 @default.
- W2893397508 hasConcept C199539241 @default.
- W2893397508 hasConcept C2776359362 @default.
- W2893397508 hasConcept C2779304628 @default.
- W2893397508 hasConcept C2779808786 @default.
- W2893397508 hasConcept C2911011789 @default.
- W2893397508 hasConcept C31510193 @default.
- W2893397508 hasConcept C31972630 @default.
- W2893397508 hasConcept C36289849 @default.