Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893399179> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2893399179 abstract "Speech enhancement is fundamental for many real-time speech applications and it is challenging in case of single-channel because practically only one data channel is available. Without any constraint, a countless range of solutions are possible to solve this problem. In this paper, we present a supervised learning approach to enhance a speech degraded by speech-babble noise, which is most challenging type of noise in speech enhancement systems. The proposed method is composed of deep neural networks (DNNs) and less aggressive Wiener filtering (LW) for speech enhancement, labeled as the DNN-LW. The proposed method is composed of the training and testing stages, respectively. The DNN in the training stage calculates the magnitude spectrums of noise-free speech and the noise signals, respectively from the input noise-masked speech features concurrently. The Less aggressive Wiener filter is then placed as an extra layer on top of the deep neural network to create the enhanced magnitude spectrum. Finally, the phase of noisy speech is used to restore the estimate of clean speech. During testing stage, the trained DNN is provided the features of noise-masked speech to attain the enhanced speech. The experimental results revealed that the DNN-LW approach performs significantly better against baseline speech enhancement methods." @default.
- W2893399179 created "2018-10-05" @default.
- W2893399179 creator A5033735980 @default.
- W2893399179 creator A5059780753 @default.
- W2893399179 creator A5085573295 @default.
- W2893399179 creator A5088317577 @default.
- W2893399179 date "2018-06-01" @default.
- W2893399179 modified "2023-10-14" @default.
- W2893399179 title "Deep Neural Network based Supervised Speech Enhancement in Speech-Babble Noise" @default.
- W2893399179 cites W1552314771 @default.
- W2893399179 cites W1968939597 @default.
- W2893399179 cites W2051428568 @default.
- W2893399179 cites W2056347616 @default.
- W2893399179 cites W2069681747 @default.
- W2893399179 cites W2128653836 @default.
- W2893399179 cites W2140828385 @default.
- W2893399179 cites W2141998673 @default.
- W2893399179 cites W2144404214 @default.
- W2893399179 cites W2168379380 @default.
- W2893399179 cites W2196970022 @default.
- W2893399179 cites W2552690809 @default.
- W2893399179 cites W3147539069 @default.
- W2893399179 doi "https://doi.org/10.1109/icis.2018.8466542" @default.
- W2893399179 hasPublicationYear "2018" @default.
- W2893399179 type Work @default.
- W2893399179 sameAs 2893399179 @default.
- W2893399179 citedByCount "7" @default.
- W2893399179 countsByYear W28933991792019 @default.
- W2893399179 countsByYear W28933991792020 @default.
- W2893399179 countsByYear W28933991792021 @default.
- W2893399179 countsByYear W28933991792022 @default.
- W2893399179 crossrefType "proceedings-article" @default.
- W2893399179 hasAuthorship W2893399179A5033735980 @default.
- W2893399179 hasAuthorship W2893399179A5059780753 @default.
- W2893399179 hasAuthorship W2893399179A5085573295 @default.
- W2893399179 hasAuthorship W2893399179A5088317577 @default.
- W2893399179 hasConcept C115961682 @default.
- W2893399179 hasConcept C154945302 @default.
- W2893399179 hasConcept C163294075 @default.
- W2893399179 hasConcept C204201278 @default.
- W2893399179 hasConcept C2776182073 @default.
- W2893399179 hasConcept C28490314 @default.
- W2893399179 hasConcept C29265498 @default.
- W2893399179 hasConcept C41008148 @default.
- W2893399179 hasConcept C50644808 @default.
- W2893399179 hasConcept C61328038 @default.
- W2893399179 hasConcept C99498987 @default.
- W2893399179 hasConceptScore W2893399179C115961682 @default.
- W2893399179 hasConceptScore W2893399179C154945302 @default.
- W2893399179 hasConceptScore W2893399179C163294075 @default.
- W2893399179 hasConceptScore W2893399179C204201278 @default.
- W2893399179 hasConceptScore W2893399179C2776182073 @default.
- W2893399179 hasConceptScore W2893399179C28490314 @default.
- W2893399179 hasConceptScore W2893399179C29265498 @default.
- W2893399179 hasConceptScore W2893399179C41008148 @default.
- W2893399179 hasConceptScore W2893399179C50644808 @default.
- W2893399179 hasConceptScore W2893399179C61328038 @default.
- W2893399179 hasConceptScore W2893399179C99498987 @default.
- W2893399179 hasLocation W28933991791 @default.
- W2893399179 hasOpenAccess W2893399179 @default.
- W2893399179 hasPrimaryLocation W28933991791 @default.
- W2893399179 hasRelatedWork W1581699318 @default.
- W2893399179 hasRelatedWork W1631909651 @default.
- W2893399179 hasRelatedWork W2355125052 @default.
- W2893399179 hasRelatedWork W2397741330 @default.
- W2893399179 hasRelatedWork W2405206884 @default.
- W2893399179 hasRelatedWork W2418631473 @default.
- W2893399179 hasRelatedWork W2738829087 @default.
- W2893399179 hasRelatedWork W2810291168 @default.
- W2893399179 hasRelatedWork W2893399179 @default.
- W2893399179 hasRelatedWork W1502326155 @default.
- W2893399179 isParatext "false" @default.
- W2893399179 isRetracted "false" @default.
- W2893399179 magId "2893399179" @default.
- W2893399179 workType "article" @default.