Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893442212> ?p ?o ?g. }
- W2893442212 endingPage "3105.e3" @default.
- W2893442212 startingPage "3098" @default.
- W2893442212 abstract "Circadian clocks play conserved roles in gating sleep and wake states throughout the day-night cycle [1Aston-Jones G. Chen S. Zhu Y. Oshinsky M.L. A neural circuit for circadian regulation of arousal.Nat. Neurosci. 2001; 4: 732-738Crossref PubMed Scopus (474) Google Scholar, 2Chou T.C. Scammell T.E. Gooley J.J. Gaus S.E. Saper C.B. Lu J. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms.J. Neurosci. 2003; 23: 10691-10702Crossref PubMed Google Scholar, 3Wurts S.W. Edgar D.M. Circadian and homeostatic control of rapid eye movement (REM) sleep: promotion of REM tendency by the suprachiasmatic nucleus.J. Neurosci. 2000; 20: 4300-4310Crossref PubMed Google Scholar, 4Liu S. Lamaze A. Liu Q. Tabuchi M. Yang Y. Fowler M. Bharadwaj R. Zhang J. Bedont J. Blackshaw S. et al.WIDE AWAKE mediates the circadian timing of sleep onset.Neuron. 2014; 82: 151-166Abstract Full Text Full Text PDF PubMed Scopus (91) Google Scholar, 5Toh K.L. Jones C.R. He Y. Eide E.J. Hinz W.A. Virshup D.M. Ptácek L.J. Fu Y.H. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome.Science. 2001; 291: 1040-1043Crossref PubMed Scopus (1171) Google Scholar]. In the fruit fly Drosophila melanogaster, DN1p clock neurons have been reported to play both wake- and sleep-promoting roles [6Kunst M. Hughes M.E. Raccuglia D. Felix M. Li M. Barnett G. Duah J. Nitabach M.N. Calcitonin gene-related peptide neurons mediate sleep-specific circadian output in Drosophila.Curr. Biol. 2014; 24: 2652-2664Abstract Full Text Full Text PDF PubMed Scopus (123) Google Scholar, 7Lamaze A. Öztürk-Çolak A. Fischer R. Peschel N. Koh K. Jepson J.E. Regulation of sleep plasticity by a thermo-sensitive circuit in Drosophila.Sci. Rep. 2017; 7: 40304Crossref PubMed Scopus (39) Google Scholar, 8Zhang L. Chung B.Y. Lear B.C. Kilman V.L. Liu Y. Mahesh G. Meissner R.A. Hardin P.E. Allada R. DN1(p) circadian neurons coordinate acute light and PDF inputs to produce robust daily behavior in Drosophila.Curr. Biol. 2010; 20: 591-599Abstract Full Text Full Text PDF PubMed Scopus (124) Google Scholar, 9Zhang Y. Liu Y. Bilodeau-Wentworth D. Hardin P.E. Emery P. Light and temperature control the contribution of specific DN1 neurons to Drosophila circadian behavior.Curr. Biol. 2010; 20: 600-605Abstract Full Text Full Text PDF PubMed Scopus (142) Google Scholar, 10Guo F. Chen X. Rosbash M. Temporal calcium profiling of specific circadian neurons in freely moving flies.Proc. Natl. Acad. Sci. USA. 2017; 114: E8780-E8787Crossref PubMed Scopus (47) Google Scholar, 11Guo F. Yu J. Jung H.J. Abruzzi K.C. Luo W. Griffith L.C. Rosbash M. Circadian neuron feedback controls the Drosophila sleep--activity profile.Nature. 2016; 536: 292-297Crossref PubMed Scopus (178) Google Scholar], suggesting a complex coupling of DN1p neurons to downstream sleep and arousal centers. However, the circuit logic by which DN1p neurons modulate sleep remains poorly understood. Here, we show that DN1p neurons can be divided into two morphologically distinct subsets. Projections from one subset surround the pars intercerebralis, a previously defined circadian output region [12Cavanaugh D.J. Geratowski J.D. Wooltorton J.R. Spaethling J.M. Hector C.E. Zheng X. Johnson E.C. Eberwine J.H. Sehgal A. Identification of a circadian output circuit for rest:activity rhythms in Drosophila.Cell. 2014; 157: 689-701Abstract Full Text Full Text PDF PubMed Scopus (150) Google Scholar]. In contrast, the second subset also sends presynaptic termini to a visual processing center, the anterior optic tubercle (AOTU) [13Omoto J.J. Keleş M.F. Nguyen B.M. Bolanos C. Lovick J.K. Frye M.A. Hartenstein V. Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations.Curr. Biol. 2017; 27: 1098-1110Abstract Full Text Full Text PDF PubMed Scopus (85) Google Scholar]. Within the AOTU, we find that DN1p neurons inhibit a class of tubercular-bulbar (TuBu) neurons that act to promote consolidated sleep. These TuBu neurons in turn form synaptic connections with R neurons of the ellipsoid body, a region linked to visual feature detection, locomotion, spatial memory, and sleep homeostasis [14Liu S. Liu Q. Tabuchi M. Wu M.N. Sleep Drive Is Encoded by Neural Plastic Changes in a Dedicated Circuit.Cell. 2016; 165: 1347-1360Abstract Full Text Full Text PDF PubMed Scopus (176) Google Scholar, 15Seelig J.D. Jayaraman V. Feature detection and orientation tuning in the Drosophila central complex.Nature. 2013; 503: 262-266Crossref PubMed Scopus (189) Google Scholar, 16Ilius M. Wolf R. Heisenberg M. The central complex of Drosophila melanogaster is involved in flight control: studies on mutants and mosaics of the gene ellipsoid body open.J. Neurogenet. 1994; 9: 189-206Crossref PubMed Scopus (83) Google Scholar, 17Neuser K. Triphan T. Mronz M. Poeck B. Strauss R. Analysis of a spatial orientation memory in Drosophila.Nature. 2008; 453: 1244-1247Crossref PubMed Scopus (280) Google Scholar]. Our results define a second output arm from DN1p neurons and suggest a role for TuBu neurons as regulators of sleep drive." @default.
- W2893442212 created "2018-10-05" @default.
- W2893442212 creator A5003876454 @default.
- W2893442212 creator A5015465485 @default.
- W2893442212 creator A5052303283 @default.
- W2893442212 creator A5077002391 @default.
- W2893442212 creator A5077316320 @default.
- W2893442212 date "2018-10-01" @default.
- W2893442212 modified "2023-10-05" @default.
- W2893442212 title "A Wake-Promoting Circadian Output Circuit in Drosophila" @default.
- W2893442212 cites W1488974332 @default.
- W2893442212 cites W1494183442 @default.
- W2893442212 cites W1923263366 @default.
- W2893442212 cites W1926588156 @default.
- W2893442212 cites W1947202934 @default.
- W2893442212 cites W1963596662 @default.
- W2893442212 cites W1972140586 @default.
- W2893442212 cites W1972689388 @default.
- W2893442212 cites W1990192893 @default.
- W2893442212 cites W1996761102 @default.
- W2893442212 cites W1997543121 @default.
- W2893442212 cites W1998105194 @default.
- W2893442212 cites W2018126536 @default.
- W2893442212 cites W2022954501 @default.
- W2893442212 cites W2025515174 @default.
- W2893442212 cites W2040631236 @default.
- W2893442212 cites W2042875552 @default.
- W2893442212 cites W2051625615 @default.
- W2893442212 cites W2052915113 @default.
- W2893442212 cites W2059514541 @default.
- W2893442212 cites W2073036589 @default.
- W2893442212 cites W2083890928 @default.
- W2893442212 cites W2087331634 @default.
- W2893442212 cites W2088960975 @default.
- W2893442212 cites W2089166645 @default.
- W2893442212 cites W2093534366 @default.
- W2893442212 cites W2137867563 @default.
- W2893442212 cites W2152395867 @default.
- W2893442212 cites W2163546388 @default.
- W2893442212 cites W2171332611 @default.
- W2893442212 cites W2253172615 @default.
- W2893442212 cites W2276547531 @default.
- W2893442212 cites W2395416306 @default.
- W2893442212 cites W2489568129 @default.
- W2893442212 cites W2577183914 @default.
- W2893442212 cites W2603603923 @default.
- W2893442212 cites W2625462354 @default.
- W2893442212 cites W2716529137 @default.
- W2893442212 cites W2758288252 @default.
- W2893442212 cites W2765562046 @default.
- W2893442212 cites W2782533187 @default.
- W2893442212 cites W4254914849 @default.
- W2893442212 doi "https://doi.org/10.1016/j.cub.2018.07.024" @default.
- W2893442212 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30270186" @default.
- W2893442212 hasPublicationYear "2018" @default.
- W2893442212 type Work @default.
- W2893442212 sameAs 2893442212 @default.
- W2893442212 citedByCount "84" @default.
- W2893442212 countsByYear W28934422122018 @default.
- W2893442212 countsByYear W28934422122019 @default.
- W2893442212 countsByYear W28934422122020 @default.
- W2893442212 countsByYear W28934422122021 @default.
- W2893442212 countsByYear W28934422122022 @default.
- W2893442212 countsByYear W28934422122023 @default.
- W2893442212 crossrefType "journal-article" @default.
- W2893442212 hasAuthorship W2893442212A5003876454 @default.
- W2893442212 hasAuthorship W2893442212A5015465485 @default.
- W2893442212 hasAuthorship W2893442212A5052303283 @default.
- W2893442212 hasAuthorship W2893442212A5077002391 @default.
- W2893442212 hasAuthorship W2893442212A5077316320 @default.
- W2893442212 hasBestOaLocation W28934422121 @default.
- W2893442212 hasConcept C121446783 @default.
- W2893442212 hasConcept C169760540 @default.
- W2893442212 hasConcept C2779317972 @default.
- W2893442212 hasConcept C86803240 @default.
- W2893442212 hasConceptScore W2893442212C121446783 @default.
- W2893442212 hasConceptScore W2893442212C169760540 @default.
- W2893442212 hasConceptScore W2893442212C2779317972 @default.
- W2893442212 hasConceptScore W2893442212C86803240 @default.
- W2893442212 hasFunder F4320320286 @default.
- W2893442212 hasIssue "19" @default.
- W2893442212 hasLocation W28934422121 @default.
- W2893442212 hasLocation W28934422122 @default.
- W2893442212 hasLocation W28934422123 @default.
- W2893442212 hasOpenAccess W2893442212 @default.
- W2893442212 hasPrimaryLocation W28934422121 @default.
- W2893442212 hasRelatedWork W1984869073 @default.
- W2893442212 hasRelatedWork W1998273093 @default.
- W2893442212 hasRelatedWork W2014015174 @default.
- W2893442212 hasRelatedWork W2025390318 @default.
- W2893442212 hasRelatedWork W2033917491 @default.
- W2893442212 hasRelatedWork W2071682544 @default.
- W2893442212 hasRelatedWork W2348517559 @default.
- W2893442212 hasRelatedWork W2983530065 @default.
- W2893442212 hasRelatedWork W4226241877 @default.
- W2893442212 hasRelatedWork W4234625062 @default.
- W2893442212 hasVolume "28" @default.
- W2893442212 isParatext "false" @default.