Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893462288> ?p ?o ?g. }
- W2893462288 abstract "Background: Endovascular treatment (EVT) is effective for stroke patients with a large vessel occlusion (LVO) of the anterior circulation. To further improve personalized stroke care, it is essential to accurately predict outcome after EVT. Machine learning might outperform classical prediction methods as it is capable of addressing complex interactions and non-linear relations between variables. Methods: We included patients from the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands (MR CLEAN) Registry, an observational cohort of LVO patients treated with EVT. We applied the following machine learning algorithms: Random Forests, Support Vector Machine, Neural Network, and Super Learner and compared their predictive value with classic logistic regression models using various variable selection methodologies. Outcome variables were good reperfusion (post-mTICI ≥2b) and functional independence (modified Rankin Scale ≤2) at 3 months using 1) only baseline variables and 2) baseline and treatment variables. Area under the ROC-curves (AUC) and difference of mean AUC between the models were assessed. Results: We included 1383 EVT patients, with good reperfusion in 531 (38%) and functional independence in 525 (38%) patients. Machine learning and logistic regression models all performed poorly in predicting good reperfusion (range mean AUC:0.53-0.57), and moderately in predicting 3-month functional independence (range mean AUC:0.77-0.79) using only baseline variables. All models performed well in predicting 3-month functional independence using both baseline and treatment variables (range mean AUC:0.88-0.91) with a negligible difference of mean AUC (0.01;95%CI:0.00-0.01) between best performing machine learning algorithm (Random Forests) and best performing logistic regression model (based on prior knowledge). Conclusion: In patients with LVO machine learning algorithms did not outperform logistic regression models in predicting reperfusion and 3-month functional independence after endovascular treatment. For all models at time of admission radiological outcome was more difficult to predict than clinical outcome." @default.
- W2893462288 created "2018-10-05" @default.
- W2893462288 creator A5012290900 @default.
- W2893462288 creator A5012416515 @default.
- W2893462288 creator A5017368781 @default.
- W2893462288 creator A5020918126 @default.
- W2893462288 creator A5022646570 @default.
- W2893462288 creator A5024004096 @default.
- W2893462288 creator A5024309954 @default.
- W2893462288 creator A5024736991 @default.
- W2893462288 creator A5026647662 @default.
- W2893462288 creator A5040243874 @default.
- W2893462288 creator A5046434206 @default.
- W2893462288 creator A5048297907 @default.
- W2893462288 creator A5055365141 @default.
- W2893462288 creator A5061133593 @default.
- W2893462288 creator A5070233691 @default.
- W2893462288 creator A5073605959 @default.
- W2893462288 creator A5082245261 @default.
- W2893462288 creator A5091435927 @default.
- W2893462288 date "2018-09-25" @default.
- W2893462288 modified "2023-10-13" @default.
- W2893462288 title "Predicting Outcome of Endovascular Treatment for Acute Ischemic Stroke: Potential Value of Machine Learning Algorithms" @default.
- W2893462288 cites W1593704843 @default.
- W2893462288 cites W1724747758 @default.
- W2893462288 cites W1919216911 @default.
- W2893462288 cites W1964357740 @default.
- W2893462288 cites W1983024255 @default.
- W2893462288 cites W2050880768 @default.
- W2893462288 cites W2054440265 @default.
- W2893462288 cites W2069388901 @default.
- W2893462288 cites W2090656275 @default.
- W2893462288 cites W2107956883 @default.
- W2893462288 cites W2113442572 @default.
- W2893462288 cites W2113820196 @default.
- W2893462288 cites W2122825543 @default.
- W2893462288 cites W2128625986 @default.
- W2893462288 cites W2132129083 @default.
- W2893462288 cites W2139621750 @default.
- W2893462288 cites W2140365873 @default.
- W2893462288 cites W2150961232 @default.
- W2893462288 cites W2154290668 @default.
- W2893462288 cites W2277258071 @default.
- W2893462288 cites W2298802111 @default.
- W2893462288 cites W2473152724 @default.
- W2893462288 cites W2483497332 @default.
- W2893462288 cites W2525984666 @default.
- W2893462288 cites W2611959715 @default.
- W2893462288 cites W2790691884 @default.
- W2893462288 cites W2911964244 @default.
- W2893462288 cites W2919115771 @default.
- W2893462288 cites W4233056867 @default.
- W2893462288 cites W58801888 @default.
- W2893462288 doi "https://doi.org/10.3389/fneur.2018.00784" @default.
- W2893462288 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6167479" @default.
- W2893462288 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30319525" @default.
- W2893462288 hasPublicationYear "2018" @default.
- W2893462288 type Work @default.
- W2893462288 sameAs 2893462288 @default.
- W2893462288 citedByCount "89" @default.
- W2893462288 countsByYear W28934622882019 @default.
- W2893462288 countsByYear W28934622882020 @default.
- W2893462288 countsByYear W28934622882021 @default.
- W2893462288 countsByYear W28934622882022 @default.
- W2893462288 countsByYear W28934622882023 @default.
- W2893462288 crossrefType "journal-article" @default.
- W2893462288 hasAuthorship W2893462288A5012290900 @default.
- W2893462288 hasAuthorship W2893462288A5012416515 @default.
- W2893462288 hasAuthorship W2893462288A5017368781 @default.
- W2893462288 hasAuthorship W2893462288A5020918126 @default.
- W2893462288 hasAuthorship W2893462288A5022646570 @default.
- W2893462288 hasAuthorship W2893462288A5024004096 @default.
- W2893462288 hasAuthorship W2893462288A5024309954 @default.
- W2893462288 hasAuthorship W2893462288A5024736991 @default.
- W2893462288 hasAuthorship W2893462288A5026647662 @default.
- W2893462288 hasAuthorship W2893462288A5040243874 @default.
- W2893462288 hasAuthorship W2893462288A5046434206 @default.
- W2893462288 hasAuthorship W2893462288A5048297907 @default.
- W2893462288 hasAuthorship W2893462288A5055365141 @default.
- W2893462288 hasAuthorship W2893462288A5061133593 @default.
- W2893462288 hasAuthorship W2893462288A5070233691 @default.
- W2893462288 hasAuthorship W2893462288A5073605959 @default.
- W2893462288 hasAuthorship W2893462288A5082245261 @default.
- W2893462288 hasAuthorship W2893462288A5091435927 @default.
- W2893462288 hasBestOaLocation W28934622881 @default.
- W2893462288 hasConcept C11413529 @default.
- W2893462288 hasConcept C119857082 @default.
- W2893462288 hasConcept C126322002 @default.
- W2893462288 hasConcept C127413603 @default.
- W2893462288 hasConcept C151956035 @default.
- W2893462288 hasConcept C154945302 @default.
- W2893462288 hasConcept C23131810 @default.
- W2893462288 hasConcept C2780645631 @default.
- W2893462288 hasConcept C2780931571 @default.
- W2893462288 hasConcept C3020199598 @default.
- W2893462288 hasConcept C33923547 @default.
- W2893462288 hasConcept C41008148 @default.
- W2893462288 hasConcept C541997718 @default.
- W2893462288 hasConcept C71924100 @default.
- W2893462288 hasConcept C78519656 @default.