Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893466632> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2893466632 abstract "Bad actors have embraced automation to construct malware, and current analysis systems cannot keep up with the ever-increasing load of malware being created daily. Additionally, some static analysis of malware can be computationally expensive, and not all static analysis should be considered for every sample that is part of a large malware dataset. As a result, highly expressive and inexpensive characterizations of malicious code, coupled with low resource machine learning classification platforms are required. In this paper, we use deep learning to build a meta-model that finds the simplest classifiers to characterize and assign malware into their corresponding families. Using static analysis of malware, we generate descriptive features to be used in conjunction with deep learning, in order to predict malware families. Our meta-model can determine when simple and less expensive malware characterization will suffice to accurately classify malicious executables, or when more computationally expensive descriptions are required. Finally, our meta-model is able to predict the simplest features and models to classify malware with an accuracy of up to 90%." @default.
- W2893466632 created "2018-10-05" @default.
- W2893466632 creator A5044003518 @default.
- W2893466632 creator A5058896802 @default.
- W2893466632 creator A5072018292 @default.
- W2893466632 creator A5072383152 @default.
- W2893466632 date "2018-08-01" @default.
- W2893466632 modified "2023-09-25" @default.
- W2893466632 title "Efficient Characterization and Classification of Malware Using Deep Learning" @default.
- W2893466632 cites W1598802353 @default.
- W2893466632 cites W1893133781 @default.
- W2893466632 cites W1966948031 @default.
- W2893466632 cites W1996975221 @default.
- W2893466632 cites W2056127986 @default.
- W2893466632 cites W2075715173 @default.
- W2893466632 cites W2252815174 @default.
- W2893466632 cites W2267635142 @default.
- W2893466632 cites W2476429474 @default.
- W2893466632 cites W2557513839 @default.
- W2893466632 cites W2609484576 @default.
- W2893466632 cites W2765468450 @default.
- W2893466632 cites W2765820957 @default.
- W2893466632 cites W68631387 @default.
- W2893466632 doi "https://doi.org/10.1109/rweek.2018.8473556" @default.
- W2893466632 hasPublicationYear "2018" @default.
- W2893466632 type Work @default.
- W2893466632 sameAs 2893466632 @default.
- W2893466632 citedByCount "8" @default.
- W2893466632 countsByYear W28934666322019 @default.
- W2893466632 countsByYear W28934666322020 @default.
- W2893466632 countsByYear W28934666322021 @default.
- W2893466632 countsByYear W28934666322022 @default.
- W2893466632 crossrefType "proceedings-article" @default.
- W2893466632 hasAuthorship W2893466632A5044003518 @default.
- W2893466632 hasAuthorship W2893466632A5058896802 @default.
- W2893466632 hasAuthorship W2893466632A5072018292 @default.
- W2893466632 hasAuthorship W2893466632A5072383152 @default.
- W2893466632 hasConcept C108583219 @default.
- W2893466632 hasConcept C119857082 @default.
- W2893466632 hasConcept C124101348 @default.
- W2893466632 hasConcept C154945302 @default.
- W2893466632 hasConcept C160145156 @default.
- W2893466632 hasConcept C199360897 @default.
- W2893466632 hasConcept C2779395397 @default.
- W2893466632 hasConcept C2780801425 @default.
- W2893466632 hasConcept C38652104 @default.
- W2893466632 hasConcept C41008148 @default.
- W2893466632 hasConcept C541664917 @default.
- W2893466632 hasConcept C84525096 @default.
- W2893466632 hasConcept C97686452 @default.
- W2893466632 hasConceptScore W2893466632C108583219 @default.
- W2893466632 hasConceptScore W2893466632C119857082 @default.
- W2893466632 hasConceptScore W2893466632C124101348 @default.
- W2893466632 hasConceptScore W2893466632C154945302 @default.
- W2893466632 hasConceptScore W2893466632C160145156 @default.
- W2893466632 hasConceptScore W2893466632C199360897 @default.
- W2893466632 hasConceptScore W2893466632C2779395397 @default.
- W2893466632 hasConceptScore W2893466632C2780801425 @default.
- W2893466632 hasConceptScore W2893466632C38652104 @default.
- W2893466632 hasConceptScore W2893466632C41008148 @default.
- W2893466632 hasConceptScore W2893466632C541664917 @default.
- W2893466632 hasConceptScore W2893466632C84525096 @default.
- W2893466632 hasConceptScore W2893466632C97686452 @default.
- W2893466632 hasLocation W28934666321 @default.
- W2893466632 hasOpenAccess W2893466632 @default.
- W2893466632 hasPrimaryLocation W28934666321 @default.
- W2893466632 hasRelatedWork W1855034413 @default.
- W2893466632 hasRelatedWork W2021436318 @default.
- W2893466632 hasRelatedWork W2148542813 @default.
- W2893466632 hasRelatedWork W2610659201 @default.
- W2893466632 hasRelatedWork W2738506631 @default.
- W2893466632 hasRelatedWork W2767455905 @default.
- W2893466632 hasRelatedWork W2800695847 @default.
- W2893466632 hasRelatedWork W2805262980 @default.
- W2893466632 hasRelatedWork W4213012150 @default.
- W2893466632 hasRelatedWork W4234891089 @default.
- W2893466632 isParatext "false" @default.
- W2893466632 isRetracted "false" @default.
- W2893466632 magId "2893466632" @default.
- W2893466632 workType "article" @default.