Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893468706> ?p ?o ?g. }
- W2893468706 endingPage "219" @default.
- W2893468706 startingPage "211" @default.
- W2893468706 abstract "Yield stress materials are known to possess a certain threshold property, a strength, that must be overcome in order for flow to occur. This strength is commonly conceived as a scalar representation of the stress tensor at the yielding point, here called the yield stress tensor. The recognition of the importance of elastic, thixotropic, and other effects not predicted by ideal viscoplastic models is becoming more and more present in the study of yield stress materials. Nevertheless, the paradigm built by the theoretical analysis of inelastic viscoplastic models has a strong influence in the literature. For example, the common denomination of the shear component of the stress tensor at the yielding point as the yield stress of the material. This nomenclature is so spread in the literature that is explicitly employed even in articles where elastic effects are investigated. Viscometric rheometry is the most widely imposed kinematics used to probe the material, and the flow curve is considered the most useful single information about the material related to flow. However, even for this fixed kinematics, the conditions at the yielding point are not uniquely determined by the shear stress component. Although the existence of normal stress differences are known to be present in a variety of yield stress materials, and virtually all yielding criteria are dependent on the invariants of the deviatoric stress tensor at the yield point, the components of the yield stress tensor other than the yield shear stress are ignored altogether. In the present work, we measure not only the shear stress component of the yield stress tensor, but also the normal stress differences at the yielding point for eight yield stress materials, in order to determine the full deviatoric yield stress tensor in viscometric flow. To this end, besides creep tests performed to find the yield shear stress, cone-plate as well as plate-plate geometries are employed to determine, respectively, the first normal stress difference, N1, and the difference of normal stress differences, N1−N2. A low-slope shear stress ramp is imposed and the normal stress differences are plotted as a function of the shear stress, in order to determine their values at the yield shear stress. In most of the cases, it is found that the normal stresses of the deviatoric yield stress tensor are significant when compared to the yield shear stress component. Therefore, in general all the yield stress tensor components can contribute significantly to the composition of a yield criterion. This fact imposes the need for reliable measurements to determine the full yield stress tensor of the material." @default.
- W2893468706 created "2018-10-05" @default.
- W2893468706 creator A5020996119 @default.
- W2893468706 creator A5029290062 @default.
- W2893468706 creator A5076615551 @default.
- W2893468706 date "2018-11-01" @default.
- W2893468706 modified "2023-10-18" @default.
- W2893468706 title "The yield stress tensor" @default.
- W2893468706 cites W1965870722 @default.
- W2893468706 cites W1977026095 @default.
- W2893468706 cites W1981047083 @default.
- W2893468706 cites W1981101297 @default.
- W2893468706 cites W1995852546 @default.
- W2893468706 cites W2003497051 @default.
- W2893468706 cites W2003533227 @default.
- W2893468706 cites W2009376584 @default.
- W2893468706 cites W2033909969 @default.
- W2893468706 cites W2045277796 @default.
- W2893468706 cites W2053252089 @default.
- W2893468706 cites W2056203102 @default.
- W2893468706 cites W2060894194 @default.
- W2893468706 cites W2061977775 @default.
- W2893468706 cites W2070812459 @default.
- W2893468706 cites W2075801039 @default.
- W2893468706 cites W2077171053 @default.
- W2893468706 cites W2077988592 @default.
- W2893468706 cites W2088476066 @default.
- W2893468706 cites W2091661628 @default.
- W2893468706 cites W2091968778 @default.
- W2893468706 cites W2099932278 @default.
- W2893468706 cites W2111242220 @default.
- W2893468706 cites W2113941137 @default.
- W2893468706 cites W2117905965 @default.
- W2893468706 cites W2138137522 @default.
- W2893468706 cites W2153962548 @default.
- W2893468706 cites W2314338840 @default.
- W2893468706 cites W2336412407 @default.
- W2893468706 cites W2380690228 @default.
- W2893468706 cites W2438709359 @default.
- W2893468706 cites W2611191453 @default.
- W2893468706 cites W3099240771 @default.
- W2893468706 cites W4235476838 @default.
- W2893468706 cites W2126337089 @default.
- W2893468706 doi "https://doi.org/10.1016/j.jnnfm.2018.09.003" @default.
- W2893468706 hasPublicationYear "2018" @default.
- W2893468706 type Work @default.
- W2893468706 sameAs 2893468706 @default.
- W2893468706 citedByCount "37" @default.
- W2893468706 countsByYear W28934687062019 @default.
- W2893468706 countsByYear W28934687062020 @default.
- W2893468706 countsByYear W28934687062021 @default.
- W2893468706 countsByYear W28934687062022 @default.
- W2893468706 countsByYear W28934687062023 @default.
- W2893468706 crossrefType "journal-article" @default.
- W2893468706 hasAuthorship W2893468706A5020996119 @default.
- W2893468706 hasAuthorship W2893468706A5029290062 @default.
- W2893468706 hasAuthorship W2893468706A5076615551 @default.
- W2893468706 hasConcept C121332964 @default.
- W2893468706 hasConcept C127413603 @default.
- W2893468706 hasConcept C134121241 @default.
- W2893468706 hasConcept C134306372 @default.
- W2893468706 hasConcept C135628077 @default.
- W2893468706 hasConcept C138885662 @default.
- W2893468706 hasConcept C155281189 @default.
- W2893468706 hasConcept C159985019 @default.
- W2893468706 hasConcept C171338203 @default.
- W2893468706 hasConcept C191172559 @default.
- W2893468706 hasConcept C192562407 @default.
- W2893468706 hasConcept C200990466 @default.
- W2893468706 hasConcept C202973686 @default.
- W2893468706 hasConcept C21036866 @default.
- W2893468706 hasConcept C21141959 @default.
- W2893468706 hasConcept C2524010 @default.
- W2893468706 hasConcept C33923547 @default.
- W2893468706 hasConcept C41895202 @default.
- W2893468706 hasConcept C48941259 @default.
- W2893468706 hasConcept C49932977 @default.
- W2893468706 hasConcept C55359492 @default.
- W2893468706 hasConcept C56918372 @default.
- W2893468706 hasConcept C57879066 @default.
- W2893468706 hasConcept C66938386 @default.
- W2893468706 hasConceptScore W2893468706C121332964 @default.
- W2893468706 hasConceptScore W2893468706C127413603 @default.
- W2893468706 hasConceptScore W2893468706C134121241 @default.
- W2893468706 hasConceptScore W2893468706C134306372 @default.
- W2893468706 hasConceptScore W2893468706C135628077 @default.
- W2893468706 hasConceptScore W2893468706C138885662 @default.
- W2893468706 hasConceptScore W2893468706C155281189 @default.
- W2893468706 hasConceptScore W2893468706C159985019 @default.
- W2893468706 hasConceptScore W2893468706C171338203 @default.
- W2893468706 hasConceptScore W2893468706C191172559 @default.
- W2893468706 hasConceptScore W2893468706C192562407 @default.
- W2893468706 hasConceptScore W2893468706C200990466 @default.
- W2893468706 hasConceptScore W2893468706C202973686 @default.
- W2893468706 hasConceptScore W2893468706C21036866 @default.
- W2893468706 hasConceptScore W2893468706C21141959 @default.
- W2893468706 hasConceptScore W2893468706C2524010 @default.
- W2893468706 hasConceptScore W2893468706C33923547 @default.