Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893469872> ?p ?o ?g. }
- W2893469872 endingPage "1981" @default.
- W2893469872 startingPage "1917" @default.
- W2893469872 abstract "Extending the results obtained in the sixties for bifurcating periodic patterns, the existence of bifurcating quasipatterns in the steady Bénard–Rayleigh convection problem is proved. These are two-dimensional patterns, quasiperiodic in any horizontal direction, invariant under horizontal rotations of angle $${pi/q}$$ . There is a small divisor problem for $${q geqq 4}$$ . Using the results of Berti–Bolle–Procesi in 2010, we adapt it to a Navier–Stokes system ruling the Bénard–Rayleigh convection problem. Our solution is approximated by the truncated power series which was formally obtained by Iooss in 2009, but which is divergent in general (Gevrey series). First, we formulate the problem in introducing a suitable parameter, able to move the spectrum of the linearized operator, as a whole, as for the Swift–Hohenberg PDE model. For using the Nash–Moser process, we are faced with the problem of inverting a linear operator which is the differential at a non zero point. There are two new difficulties: (i) First, the extra dimension leading to a more complicated spectrum of the linear operator. This first difficulty leads to use specific projections for reducing the spectrum of the studied operator, which we want to invert, to a finite set very close to 0. (ii) The second difficulty is the fact that the linearization L(N) at a non-zero point leads to a non-selfadjoint operator, contrary to what occurs in previous works. This is more serious, and leads to use the spectrum of L(N)L(N)* which depends mainly quadratically on the main parameter. A careful study of the “bad set”of parameters, with an assumption on the convexity of the eigenvalues of this operator, allows us to obtain a good estimate, as it is necessary for using the results of Berti et al. for solving ”the range equation”. We again use separation properties of the Fourier spectrum (see the Bourgain and Craig results) for obtaining an estimate in high Sobolev norms. It then remains to solve the one-dimensional “bifurcation equation. For any $${q geqq 4}$$ , and provided that a weak transversality conjecture is realized, we prove the existence of a bifurcating convective quasipattern of order 2q, above the critical Rayleigh number." @default.
- W2893469872 created "2018-10-05" @default.
- W2893469872 creator A5023426663 @default.
- W2893469872 creator A5023786984 @default.
- W2893469872 date "2018-09-28" @default.
- W2893469872 modified "2023-10-17" @default.
- W2893469872 title "Existence of Bifurcating Quasipatterns in Steady Bénard–Rayleigh Convection" @default.
- W2893469872 cites W1501490042 @default.
- W2893469872 cites W1575147392 @default.
- W2893469872 cites W1966520019 @default.
- W2893469872 cites W1981123810 @default.
- W2893469872 cites W1981557583 @default.
- W2893469872 cites W1994854394 @default.
- W2893469872 cites W1997546244 @default.
- W2893469872 cites W2000308520 @default.
- W2893469872 cites W2006790639 @default.
- W2893469872 cites W2012452860 @default.
- W2893469872 cites W2014747751 @default.
- W2893469872 cites W2016979755 @default.
- W2893469872 cites W2041599937 @default.
- W2893469872 cites W2088818297 @default.
- W2893469872 cites W2112974294 @default.
- W2893469872 cites W2138428581 @default.
- W2893469872 cites W2606435268 @default.
- W2893469872 cites W3102209191 @default.
- W2893469872 cites W3143321167 @default.
- W2893469872 cites W4292101538 @default.
- W2893469872 doi "https://doi.org/10.1007/s00205-018-1313-6" @default.
- W2893469872 hasPublicationYear "2018" @default.
- W2893469872 type Work @default.
- W2893469872 sameAs 2893469872 @default.
- W2893469872 citedByCount "9" @default.
- W2893469872 countsByYear W28934698722019 @default.
- W2893469872 countsByYear W28934698722020 @default.
- W2893469872 countsByYear W28934698722021 @default.
- W2893469872 countsByYear W28934698722022 @default.
- W2893469872 countsByYear W28934698722023 @default.
- W2893469872 crossrefType "journal-article" @default.
- W2893469872 hasAuthorship W2893469872A5023426663 @default.
- W2893469872 hasAuthorship W2893469872A5023786984 @default.
- W2893469872 hasBestOaLocation W28934698722 @default.
- W2893469872 hasConcept C104317684 @default.
- W2893469872 hasConcept C106836276 @default.
- W2893469872 hasConcept C10899652 @default.
- W2893469872 hasConcept C11210021 @default.
- W2893469872 hasConcept C121332964 @default.
- W2893469872 hasConcept C132812236 @default.
- W2893469872 hasConcept C134306372 @default.
- W2893469872 hasConcept C156778621 @default.
- W2893469872 hasConcept C158448853 @default.
- W2893469872 hasConcept C158622935 @default.
- W2893469872 hasConcept C17020691 @default.
- W2893469872 hasConcept C185592680 @default.
- W2893469872 hasConcept C33923547 @default.
- W2893469872 hasConcept C54791560 @default.
- W2893469872 hasConcept C55493867 @default.
- W2893469872 hasConcept C55637507 @default.
- W2893469872 hasConcept C62520636 @default.
- W2893469872 hasConcept C86339819 @default.
- W2893469872 hasConcept C97355855 @default.
- W2893469872 hasConceptScore W2893469872C104317684 @default.
- W2893469872 hasConceptScore W2893469872C106836276 @default.
- W2893469872 hasConceptScore W2893469872C10899652 @default.
- W2893469872 hasConceptScore W2893469872C11210021 @default.
- W2893469872 hasConceptScore W2893469872C121332964 @default.
- W2893469872 hasConceptScore W2893469872C132812236 @default.
- W2893469872 hasConceptScore W2893469872C134306372 @default.
- W2893469872 hasConceptScore W2893469872C156778621 @default.
- W2893469872 hasConceptScore W2893469872C158448853 @default.
- W2893469872 hasConceptScore W2893469872C158622935 @default.
- W2893469872 hasConceptScore W2893469872C17020691 @default.
- W2893469872 hasConceptScore W2893469872C185592680 @default.
- W2893469872 hasConceptScore W2893469872C33923547 @default.
- W2893469872 hasConceptScore W2893469872C54791560 @default.
- W2893469872 hasConceptScore W2893469872C55493867 @default.
- W2893469872 hasConceptScore W2893469872C55637507 @default.
- W2893469872 hasConceptScore W2893469872C62520636 @default.
- W2893469872 hasConceptScore W2893469872C86339819 @default.
- W2893469872 hasConceptScore W2893469872C97355855 @default.
- W2893469872 hasIssue "3" @default.
- W2893469872 hasLocation W28934698721 @default.
- W2893469872 hasLocation W28934698722 @default.
- W2893469872 hasLocation W28934698723 @default.
- W2893469872 hasLocation W28934698724 @default.
- W2893469872 hasLocation W28934698725 @default.
- W2893469872 hasLocation W28934698726 @default.
- W2893469872 hasOpenAccess W2893469872 @default.
- W2893469872 hasPrimaryLocation W28934698721 @default.
- W2893469872 hasRelatedWork W1965891566 @default.
- W2893469872 hasRelatedWork W2048534120 @default.
- W2893469872 hasRelatedWork W2281420946 @default.
- W2893469872 hasRelatedWork W2312761893 @default.
- W2893469872 hasRelatedWork W2751701703 @default.
- W2893469872 hasRelatedWork W2963813602 @default.
- W2893469872 hasRelatedWork W3021653867 @default.
- W2893469872 hasRelatedWork W3203098669 @default.
- W2893469872 hasRelatedWork W4220881506 @default.
- W2893469872 hasRelatedWork W4300183508 @default.