Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893480388> ?p ?o ?g. }
- W2893480388 abstract "Current machine-learning methods to reproduce ab initio potential energy landscapes suffer from an unfavorable computational scaling with respect to the number of chemical species. In this work, we propose a new approach by using optimized symmetry functions to explore similarities of structures in multicomponent systems in order to yield linear complexity. We combine these symmetry functions with the charge equilibration via neural network technique, a reliable artificial neural network potential for ionic materials, and apply this method to study alkali-halide materials MX with 6 chemical species (M = {Li, Na, K} and X = {F, Cl, Br}). Our results show that our approach provides good agreement both with experimental and DFT reference data of many physical and structural properties for any chemical combination." @default.
- W2893480388 created "2018-10-05" @default.
- W2893480388 creator A5037299838 @default.
- W2893480388 creator A5051038059 @default.
- W2893480388 creator A5059473867 @default.
- W2893480388 date "2018-09-25" @default.
- W2893480388 modified "2023-10-12" @default.
- W2893480388 title "Optimized symmetry functions for machine-learning interatomic potentials of multicomponent systems" @default.
- W2893480388 cites W1484949067 @default.
- W2893480388 cites W1596185547 @default.
- W2893480388 cites W1970127494 @default.
- W2893480388 cites W1975997599 @default.
- W2893480388 cites W1979464298 @default.
- W2893480388 cites W1981368803 @default.
- W2893480388 cites W1992985800 @default.
- W2893480388 cites W2007395042 @default.
- W2893480388 cites W2025444507 @default.
- W2893480388 cites W2033086537 @default.
- W2893480388 cites W2053876153 @default.
- W2893480388 cites W2069407997 @default.
- W2893480388 cites W2070063446 @default.
- W2893480388 cites W2083222334 @default.
- W2893480388 cites W2083415705 @default.
- W2893480388 cites W2086702546 @default.
- W2893480388 cites W2101305876 @default.
- W2893480388 cites W2104489082 @default.
- W2893480388 cites W2105934661 @default.
- W2893480388 cites W2130437470 @default.
- W2893480388 cites W2133959849 @default.
- W2893480388 cites W2144062946 @default.
- W2893480388 cites W2150539921 @default.
- W2893480388 cites W2155155530 @default.
- W2893480388 cites W2327114941 @default.
- W2893480388 cites W2334119975 @default.
- W2893480388 cites W2529978872 @default.
- W2893480388 cites W2593724699 @default.
- W2893480388 cites W2606438896 @default.
- W2893480388 cites W2650911154 @default.
- W2893480388 cites W2746867917 @default.
- W2893480388 cites W2776192919 @default.
- W2893480388 cites W3102324439 @default.
- W2893480388 cites W3103971946 @default.
- W2893480388 cites W832976576 @default.
- W2893480388 doi "https://doi.org/10.1063/1.5040005" @default.
- W2893480388 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30278670" @default.
- W2893480388 hasPublicationYear "2018" @default.
- W2893480388 type Work @default.
- W2893480388 sameAs 2893480388 @default.
- W2893480388 citedByCount "20" @default.
- W2893480388 countsByYear W28934803882019 @default.
- W2893480388 countsByYear W28934803882020 @default.
- W2893480388 countsByYear W28934803882021 @default.
- W2893480388 countsByYear W28934803882022 @default.
- W2893480388 countsByYear W28934803882023 @default.
- W2893480388 crossrefType "journal-article" @default.
- W2893480388 hasAuthorship W2893480388A5037299838 @default.
- W2893480388 hasAuthorship W2893480388A5051038059 @default.
- W2893480388 hasAuthorship W2893480388A5059473867 @default.
- W2893480388 hasBestOaLocation W28934803882 @default.
- W2893480388 hasConcept C119857082 @default.
- W2893480388 hasConcept C121332964 @default.
- W2893480388 hasConcept C121864883 @default.
- W2893480388 hasConcept C134121241 @default.
- W2893480388 hasConcept C145148216 @default.
- W2893480388 hasConcept C147597530 @default.
- W2893480388 hasConcept C159467904 @default.
- W2893480388 hasConcept C183971685 @default.
- W2893480388 hasConcept C185592680 @default.
- W2893480388 hasConcept C18762648 @default.
- W2893480388 hasConcept C192562407 @default.
- W2893480388 hasConcept C2182769 @default.
- W2893480388 hasConcept C2524010 @default.
- W2893480388 hasConcept C2779886137 @default.
- W2893480388 hasConcept C2781442258 @default.
- W2893480388 hasConcept C32909587 @default.
- W2893480388 hasConcept C33923547 @default.
- W2893480388 hasConcept C41008148 @default.
- W2893480388 hasConcept C50644808 @default.
- W2893480388 hasConcept C62520636 @default.
- W2893480388 hasConcept C97355855 @default.
- W2893480388 hasConcept C99844830 @default.
- W2893480388 hasConceptScore W2893480388C119857082 @default.
- W2893480388 hasConceptScore W2893480388C121332964 @default.
- W2893480388 hasConceptScore W2893480388C121864883 @default.
- W2893480388 hasConceptScore W2893480388C134121241 @default.
- W2893480388 hasConceptScore W2893480388C145148216 @default.
- W2893480388 hasConceptScore W2893480388C147597530 @default.
- W2893480388 hasConceptScore W2893480388C159467904 @default.
- W2893480388 hasConceptScore W2893480388C183971685 @default.
- W2893480388 hasConceptScore W2893480388C185592680 @default.
- W2893480388 hasConceptScore W2893480388C18762648 @default.
- W2893480388 hasConceptScore W2893480388C192562407 @default.
- W2893480388 hasConceptScore W2893480388C2182769 @default.
- W2893480388 hasConceptScore W2893480388C2524010 @default.
- W2893480388 hasConceptScore W2893480388C2779886137 @default.
- W2893480388 hasConceptScore W2893480388C2781442258 @default.
- W2893480388 hasConceptScore W2893480388C32909587 @default.
- W2893480388 hasConceptScore W2893480388C33923547 @default.
- W2893480388 hasConceptScore W2893480388C41008148 @default.
- W2893480388 hasConceptScore W2893480388C50644808 @default.