Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893480879> ?p ?o ?g. }
- W2893480879 endingPage "2889" @default.
- W2893480879 startingPage "2855" @default.
- W2893480879 abstract "It has been suggested that external and/or internal limitations paradoxically may lead to superior learning, that is, the concepts of starting small and less is more (Elman, ; Newport, ). In this paper, we explore the type of incremental ordering during training that might help learning, and what mechanism explains this facilitation. We report four artificial grammar learning experiments with human participants. In Experiments 1a and 1b we found a beneficial effect of starting small using two types of simple recursive grammars: right-branching and center-embedding, with recursive embedded clauses in fixed positions and fixed length. This effect was replicated in Experiment 2 (N = 100). In Experiment 3 and 4, we used a more complex center-embedded grammar with recursive loops in variable positions, producing strings of variable length. When participants were presented an incremental ordering of training stimuli, as in natural language, they were better able to generalize their knowledge of simple units to more complex units when the training input grew according to structural complexity, compared to when it grew according to string length. Overall, the results suggest that starting small confers an advantage for learning complex center-embedded structures when the input is organized according to structural complexity." @default.
- W2893480879 created "2018-10-05" @default.
- W2893480879 creator A5012956164 @default.
- W2893480879 creator A5018719343 @default.
- W2893480879 creator A5019817146 @default.
- W2893480879 creator A5048990024 @default.
- W2893480879 creator A5062986515 @default.
- W2893480879 creator A5081621956 @default.
- W2893480879 date "2018-09-27" @default.
- W2893480879 modified "2023-09-23" @default.
- W2893480879 title "Under What Conditions Can Recursion Be Learned? Effects of Starting Small in Artificial Grammar Learning of Center‐Embedded Structure" @default.
- W2893480879 cites W1764000889 @default.
- W2893480879 cites W1915189455 @default.
- W2893480879 cites W1925099835 @default.
- W2893480879 cites W1965511524 @default.
- W2893480879 cites W1965689626 @default.
- W2893480879 cites W1967328208 @default.
- W2893480879 cites W1982016222 @default.
- W2893480879 cites W1984588653 @default.
- W2893480879 cites W1985760343 @default.
- W2893480879 cites W1988591936 @default.
- W2893480879 cites W1996103427 @default.
- W2893480879 cites W1999450617 @default.
- W2893480879 cites W2001051355 @default.
- W2893480879 cites W2004187255 @default.
- W2893480879 cites W2004739134 @default.
- W2893480879 cites W2008664509 @default.
- W2893480879 cites W2008728369 @default.
- W2893480879 cites W2010753664 @default.
- W2893480879 cites W2013567601 @default.
- W2893480879 cites W2016440390 @default.
- W2893480879 cites W2016935437 @default.
- W2893480879 cites W2017515056 @default.
- W2893480879 cites W2020943857 @default.
- W2893480879 cites W2022767269 @default.
- W2893480879 cites W2032443453 @default.
- W2893480879 cites W2043580323 @default.
- W2893480879 cites W2049139371 @default.
- W2893480879 cites W2064304610 @default.
- W2893480879 cites W2070332361 @default.
- W2893480879 cites W2076332735 @default.
- W2893480879 cites W2083270362 @default.
- W2893480879 cites W2091013739 @default.
- W2893480879 cites W2093034086 @default.
- W2893480879 cites W2093367935 @default.
- W2893480879 cites W2098697286 @default.
- W2893480879 cites W2103142096 @default.
- W2893480879 cites W2105292255 @default.
- W2893480879 cites W2107564662 @default.
- W2893480879 cites W2110485445 @default.
- W2893480879 cites W2116137580 @default.
- W2893480879 cites W2121853833 @default.
- W2893480879 cites W2122533541 @default.
- W2893480879 cites W2123342461 @default.
- W2893480879 cites W2130494162 @default.
- W2893480879 cites W2134258127 @default.
- W2893480879 cites W2137145004 @default.
- W2893480879 cites W2141708418 @default.
- W2893480879 cites W2144066741 @default.
- W2893480879 cites W2146051167 @default.
- W2893480879 cites W2147306438 @default.
- W2893480879 cites W2151834591 @default.
- W2893480879 cites W2152516403 @default.
- W2893480879 cites W2154346509 @default.
- W2893480879 cites W2160380535 @default.
- W2893480879 cites W2160732323 @default.
- W2893480879 cites W2163065750 @default.
- W2893480879 cites W2167631320 @default.
- W2893480879 cites W2170014302 @default.
- W2893480879 cites W2170173914 @default.
- W2893480879 cites W2334367978 @default.
- W2893480879 cites W2625393056 @default.
- W2893480879 cites W2907911668 @default.
- W2893480879 cites W40210493 @default.
- W2893480879 cites W4239427658 @default.
- W2893480879 cites W4250653287 @default.
- W2893480879 cites W4256187912 @default.
- W2893480879 doi "https://doi.org/10.1111/cogs.12685" @default.
- W2893480879 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6585836" @default.
- W2893480879 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30264489" @default.
- W2893480879 hasPublicationYear "2018" @default.
- W2893480879 type Work @default.
- W2893480879 sameAs 2893480879 @default.
- W2893480879 citedByCount "6" @default.
- W2893480879 countsByYear W28934808792019 @default.
- W2893480879 countsByYear W28934808792020 @default.
- W2893480879 countsByYear W28934808792021 @default.
- W2893480879 countsByYear W28934808792022 @default.
- W2893480879 countsByYear W28934808792023 @default.
- W2893480879 crossrefType "journal-article" @default.
- W2893480879 hasAuthorship W2893480879A5012956164 @default.
- W2893480879 hasAuthorship W2893480879A5018719343 @default.
- W2893480879 hasAuthorship W2893480879A5019817146 @default.
- W2893480879 hasAuthorship W2893480879A5048990024 @default.
- W2893480879 hasAuthorship W2893480879A5062986515 @default.
- W2893480879 hasAuthorship W2893480879A5081621956 @default.
- W2893480879 hasBestOaLocation W28934808791 @default.
- W2893480879 hasConcept C111472728 @default.