Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893487783> ?p ?o ?g. }
- W2893487783 endingPage "99" @default.
- W2893487783 startingPage "90" @default.
- W2893487783 abstract "This study aimed to evaluate the effectiveness of estrous detection technique based on continuous measurements of vaginal temperature (VT) and conductivity (VC) with supervised machine learning in cattle. The VT and VC of 17 cows in tie-stalls were measured using our developed wearable vaginal sensor from Day 11 (Day 0 = ovulation day) to Day 11 of the subsequent estrous cycle at 15-min interval. After the maximum VT and VC were extracted hourly, their changes were expressed as residual VT (rVT = actual VT − mean VT for the same time on the previous 3 days) and as VC ratio (VCr = actual VC/mean VC for the same time on Day 11–13), respectively, and were used for analysis. Trans-rectal ultrasonography was performed to monitor ovarian structure changes. The plasma concentrations of reproductive hormones (progesterone: P4, estradiol-17β: E2, and LH) were measured in the experimental period. Standing estrus was confirmed by testing with herd mates at 3-h interval. The rVT decreased transiently, which coincided with decreasing P4 a few days before estrus, and a sharp increase was associated with LH surge during estrus. The VCr increased as estrus approached, corresponding with decreasing P4 and increasing E2 and LH. After noise reduction, features, possible to follow-up estrus-associated changes in rVT and VCr, were extracted and used for developing estrous detection models; 9 models were developed with 3 feature sets (features extracted from rVT alone, VCr alone, and combination of rVT and VCr) and 3 machine learning algorithms (decision tree: DT, support vector machine: SVM, and artificial neural network: ANN). Cross-validation showed that models using the features from the combination of rVT and VCr showed better performance in terms of sensitivity and precision than those using features from VCr alone, and precision than those of using features from rVT alone. Within the models using the features from the combination of rVT and VCr, sensitivity and precision of the model generated by ANN were numerically, but not statistically, higher than those generated by DT and SVM. Of 17 estruses, 16 were detected, with one false positive, when the best model was used. Furthermore, both mean and variance of the interval from the beginning of the estrous detection alert to ovulation (27.3 ± 6.7 h, mean ± SD of 16 estruses) were not significantly different to those from the onset of standing estrus to ovulation (30.8 ± 5.8 h, n = 17), indicating that the estrus can be detected real-time by the present technique. Hence, the estrous detection technique based on continuous measurements of VT and VC with supervised machine learning has a potential for efficient and accurate estrous detection in cattle." @default.
- W2893487783 created "2018-10-05" @default.
- W2893487783 creator A5004532854 @default.
- W2893487783 creator A5011917411 @default.
- W2893487783 creator A5044544424 @default.
- W2893487783 creator A5044709042 @default.
- W2893487783 creator A5058836649 @default.
- W2893487783 creator A5059436965 @default.
- W2893487783 creator A5059561357 @default.
- W2893487783 creator A5061992702 @default.
- W2893487783 creator A5074413847 @default.
- W2893487783 date "2019-01-01" @default.
- W2893487783 modified "2023-10-16" @default.
- W2893487783 title "Estrous detection by continuous measurements of vaginal temperature and conductivity with supervised machine learning in cattle" @default.
- W2893487783 cites W1559982451 @default.
- W2893487783 cites W1964841141 @default.
- W2893487783 cites W1964940342 @default.
- W2893487783 cites W1979177449 @default.
- W2893487783 cites W1979398689 @default.
- W2893487783 cites W1985009168 @default.
- W2893487783 cites W1986873494 @default.
- W2893487783 cites W1988710908 @default.
- W2893487783 cites W1992113393 @default.
- W2893487783 cites W1999959389 @default.
- W2893487783 cites W2002016471 @default.
- W2893487783 cites W2010023724 @default.
- W2893487783 cites W2020771103 @default.
- W2893487783 cites W2022009755 @default.
- W2893487783 cites W2026343156 @default.
- W2893487783 cites W2028763019 @default.
- W2893487783 cites W2032134750 @default.
- W2893487783 cites W2033139869 @default.
- W2893487783 cites W2038897963 @default.
- W2893487783 cites W2045454990 @default.
- W2893487783 cites W2058606970 @default.
- W2893487783 cites W2059458020 @default.
- W2893487783 cites W2062554606 @default.
- W2893487783 cites W2066462841 @default.
- W2893487783 cites W2071410728 @default.
- W2893487783 cites W2072423987 @default.
- W2893487783 cites W2073982666 @default.
- W2893487783 cites W2077238796 @default.
- W2893487783 cites W2079313372 @default.
- W2893487783 cites W2084346549 @default.
- W2893487783 cites W2091548369 @default.
- W2893487783 cites W2099243582 @default.
- W2893487783 cites W2100483895 @default.
- W2893487783 cites W2101347491 @default.
- W2893487783 cites W2105991737 @default.
- W2893487783 cites W2108628595 @default.
- W2893487783 cites W2111447820 @default.
- W2893487783 cites W2114041920 @default.
- W2893487783 cites W2123121578 @default.
- W2893487783 cites W2137999399 @default.
- W2893487783 cites W2144934334 @default.
- W2893487783 cites W2146884567 @default.
- W2893487783 cites W2154460525 @default.
- W2893487783 cites W2167679822 @default.
- W2893487783 cites W2168560110 @default.
- W2893487783 cites W2419695346 @default.
- W2893487783 cites W2467187347 @default.
- W2893487783 cites W2593472688 @default.
- W2893487783 cites W2759037578 @default.
- W2893487783 cites W3145116527 @default.
- W2893487783 cites W4222760 @default.
- W2893487783 cites W4229980202 @default.
- W2893487783 doi "https://doi.org/10.1016/j.theriogenology.2018.09.038" @default.
- W2893487783 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30292860" @default.
- W2893487783 hasPublicationYear "2019" @default.
- W2893487783 type Work @default.
- W2893487783 sameAs 2893487783 @default.
- W2893487783 citedByCount "24" @default.
- W2893487783 countsByYear W28934877832020 @default.
- W2893487783 countsByYear W28934877832021 @default.
- W2893487783 countsByYear W28934877832022 @default.
- W2893487783 countsByYear W28934877832023 @default.
- W2893487783 crossrefType "journal-article" @default.
- W2893487783 hasAuthorship W2893487783A5004532854 @default.
- W2893487783 hasAuthorship W2893487783A5011917411 @default.
- W2893487783 hasAuthorship W2893487783A5044544424 @default.
- W2893487783 hasAuthorship W2893487783A5044709042 @default.
- W2893487783 hasAuthorship W2893487783A5058836649 @default.
- W2893487783 hasAuthorship W2893487783A5059436965 @default.
- W2893487783 hasAuthorship W2893487783A5059561357 @default.
- W2893487783 hasAuthorship W2893487783A5061992702 @default.
- W2893487783 hasAuthorship W2893487783A5074413847 @default.
- W2893487783 hasConcept C126322002 @default.
- W2893487783 hasConcept C134018914 @default.
- W2893487783 hasConcept C140793950 @default.
- W2893487783 hasConcept C194775826 @default.
- W2893487783 hasConcept C1998276 @default.
- W2893487783 hasConcept C2777702977 @default.
- W2893487783 hasConcept C2778610407 @default.
- W2893487783 hasConcept C2779234561 @default.
- W2893487783 hasConcept C54355233 @default.
- W2893487783 hasConcept C71315377 @default.
- W2893487783 hasConcept C71924100 @default.
- W2893487783 hasConcept C86803240 @default.