Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893511054> ?p ?o ?g. }
- W2893511054 endingPage "219" @default.
- W2893511054 startingPage "208" @default.
- W2893511054 abstract "Summary Background: As healthcare increasingly digitizes, streaming waveform data is being made available from an variety of sources, but there still remains a paucity of performant clinical decision support systems. For example, in the intensive care unit (ICU) existing automated alarm systems typically rely on simple thresholding that result in frequent false positives. Recurrent false positive alerts create distrust of alarm mechanisms that can be directly detrimental to patient health. To improve patient care in the ICU, we need alert systems that are both pervasive, and accurate so as to be informative and trusted by providers. Objective: We aimed to develop a machine learning-based classifier to detect abnormal waveform events using the use case of mechanical ventilation waveform analysis, and the detection of harmful forms of ventilation delivery to patients. We specifically focused on detecting injurious subtypes of patient-ventilator asynchrony (PVA). Methods: Using a dataset of breaths recorded from 35 different patients, we used machine learning to create computational models to automatically detect, and classify two types of injurious PVA, double trigger asynchrony (DTA), breath stacking asynchrony (BSA). We examined the use of synthetic minority over-sampling technique (SMOTE) to overcome class imbalance problems, varied methods for feature selection, and use of ensemble methods to optimize the performance of our model. Results: We created an ensemble classifier that is able to accurately detect DTA at a sensitivity/specificity of 0.960/0.975, BSA at sensitivity/specificity of 0.944/0.987, and non-PVA events at sensitivity/specificity of .967/.980. Conclusions: Our results suggest that it is possible to create a high-performing machine learning-based model for detecting PVA in mechanical ventilator waveform data in spite of both intra-patient, and inter-patient variability in waveform patterns, and the presence of clinical artifacts like cough and suction procedures. Our work highlights the importance of addressing class imbalance in clinical data sets, and the combined use of statistical methods and expert knowledge in feature selection." @default.
- W2893511054 created "2018-10-05" @default.
- W2893511054 creator A5012872041 @default.
- W2893511054 creator A5017383502 @default.
- W2893511054 creator A5030964696 @default.
- W2893511054 creator A5039555689 @default.
- W2893511054 creator A5040980133 @default.
- W2893511054 creator A5049705892 @default.
- W2893511054 creator A5084163286 @default.
- W2893511054 date "2018-09-01" @default.
- W2893511054 modified "2023-09-30" @default.
- W2893511054 title "Creation of a Robust and Generalizable Machine Learning Classifier for Patient Ventilator Asynchrony" @default.
- W2893511054 cites W145350630 @default.
- W2893511054 cites W1521513558 @default.
- W2893511054 cites W1548802052 @default.
- W2893511054 cites W1577352482 @default.
- W2893511054 cites W1588282782 @default.
- W2893511054 cites W1663973292 @default.
- W2893511054 cites W1678356000 @default.
- W2893511054 cites W1840338487 @default.
- W2893511054 cites W1859015796 @default.
- W2893511054 cites W1943483272 @default.
- W2893511054 cites W1959220275 @default.
- W2893511054 cites W1978981734 @default.
- W2893511054 cites W1983661866 @default.
- W2893511054 cites W1989977532 @default.
- W2893511054 cites W1993410446 @default.
- W2893511054 cites W1993814582 @default.
- W2893511054 cites W1995781378 @default.
- W2893511054 cites W1997653987 @default.
- W2893511054 cites W1999517440 @default.
- W2893511054 cites W2001741247 @default.
- W2893511054 cites W2004487242 @default.
- W2893511054 cites W2015866962 @default.
- W2893511054 cites W2017608370 @default.
- W2893511054 cites W2020395268 @default.
- W2893511054 cites W2022411992 @default.
- W2893511054 cites W2031155522 @default.
- W2893511054 cites W2031303258 @default.
- W2893511054 cites W2040884411 @default.
- W2893511054 cites W2044731446 @default.
- W2893511054 cites W2047282951 @default.
- W2893511054 cites W2056132907 @default.
- W2893511054 cites W2064391329 @default.
- W2893511054 cites W2072793207 @default.
- W2893511054 cites W2088343584 @default.
- W2893511054 cites W2089468765 @default.
- W2893511054 cites W2094942849 @default.
- W2893511054 cites W2101234009 @default.
- W2893511054 cites W2111833294 @default.
- W2893511054 cites W2119479037 @default.
- W2893511054 cites W2120751691 @default.
- W2893511054 cites W2133462743 @default.
- W2893511054 cites W2133958955 @default.
- W2893511054 cites W2138190513 @default.
- W2893511054 cites W2142334564 @default.
- W2893511054 cites W2143426320 @default.
- W2893511054 cites W2147595228 @default.
- W2893511054 cites W2148143831 @default.
- W2893511054 cites W2157286909 @default.
- W2893511054 cites W2158166972 @default.
- W2893511054 cites W2162191950 @default.
- W2893511054 cites W2167917621 @default.
- W2893511054 cites W2315021429 @default.
- W2893511054 cites W2322376236 @default.
- W2893511054 cites W2328140773 @default.
- W2893511054 cites W2341381956 @default.
- W2893511054 cites W2372800617 @default.
- W2893511054 cites W2463144296 @default.
- W2893511054 cites W2519663458 @default.
- W2893511054 cites W2525984666 @default.
- W2893511054 cites W2750557731 @default.
- W2893511054 cites W2767056145 @default.
- W2893511054 cites W3085162807 @default.
- W2893511054 cites W585037468 @default.
- W2893511054 doi "https://doi.org/10.3414/me17-02-0012" @default.
- W2893511054 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30919393" @default.
- W2893511054 hasPublicationYear "2018" @default.
- W2893511054 type Work @default.
- W2893511054 sameAs 2893511054 @default.
- W2893511054 citedByCount "21" @default.
- W2893511054 countsByYear W28935110542018 @default.
- W2893511054 countsByYear W28935110542019 @default.
- W2893511054 countsByYear W28935110542020 @default.
- W2893511054 countsByYear W28935110542021 @default.
- W2893511054 countsByYear W28935110542022 @default.
- W2893511054 countsByYear W28935110542023 @default.
- W2893511054 crossrefType "journal-article" @default.
- W2893511054 hasAuthorship W2893511054A5012872041 @default.
- W2893511054 hasAuthorship W2893511054A5017383502 @default.
- W2893511054 hasAuthorship W2893511054A5030964696 @default.
- W2893511054 hasAuthorship W2893511054A5039555689 @default.
- W2893511054 hasAuthorship W2893511054A5040980133 @default.
- W2893511054 hasAuthorship W2893511054A5049705892 @default.
- W2893511054 hasAuthorship W2893511054A5084163286 @default.
- W2893511054 hasBestOaLocation W28935110542 @default.
- W2893511054 hasConcept C119857082 @default.
- W2893511054 hasConcept C12267149 @default.