Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893523295> ?p ?o ?g. }
- W2893523295 abstract "Author(s): Lin, Ziheng | Advisor(s): Pozdnukhov, Alexei | Abstract: Locational data generated by mobile devices present an opportunity to substantially simplify methodologies and reduce analysis latencies in short-term transportation planning applications. Short-term transportation planning, such as traffic flow management or traffic demand management, requires accurate prediction of daily network congestion levels and the congestion contributors. The existing human mobility models using locational data have fo- cused on predicting next activities, and many models limited the prediction to only temporal features or only spatial features that they cannot be directly applied to such applications. In this dissertation, we propose Long Short Term Memory (LSTM) models for learning and predicting human mobility sequences using mobile locational data. The major contributions of this dissertation include the following: first, we developed the LSTM mobility models that are capable of learning and predicting the entire mobility sequences within a time window of interest; second, we developed the LSTM mobility models that are able to predict activity sequences with activity type choices and explicit spatial-temporal choices; third, the LSTM mobility models are able to capture long-term activity dependencies. The LSTM models can be applied for transportation demand forecasting problems, including typical-day activity prediction, medium-term activity prediction, and activity prediction with social-demographic information. We performed validation through micro-simulation and compared the simula- tion results to real-world traffic counts. The results showed high similarities between gen- erated traffic volumes and observed traffic volumes. The performance of LSTM models was also compared against baseline sequence models including Hidden Markov Models and near- est neighbour models. Using daily activity structure and daily travel distance as metrics, we observed better performance of LSTM models due to the capability of learning long-term activity dependencies. Lastly, we extended the LSTM mobility models for learning activ- ity sequences with contextual information. We demonstrated the capability of the LSTM models to handle both discrete and continuous contextual information." @default.
- W2893523295 created "2018-10-05" @default.
- W2893523295 creator A5000590701 @default.
- W2893523295 date "2018-01-01" @default.
- W2893523295 modified "2023-09-27" @default.
- W2893523295 title "Recurrent Neural Network Models of Human Mobility" @default.
- W2893523295 cites W1514535095 @default.
- W2893523295 cites W1574089532 @default.
- W2893523295 cites W1579853615 @default.
- W2893523295 cites W1850742715 @default.
- W2893523295 cites W1895577753 @default.
- W2893523295 cites W196214544 @default.
- W2893523295 cites W1969606544 @default.
- W2893523295 cites W1971518768 @default.
- W2893523295 cites W1972243012 @default.
- W2893523295 cites W1974520660 @default.
- W2893523295 cites W1988545169 @default.
- W2893523295 cites W1994413287 @default.
- W2893523295 cites W1996073320 @default.
- W2893523295 cites W2004353783 @default.
- W2893523295 cites W2004474446 @default.
- W2893523295 cites W2020201744 @default.
- W2893523295 cites W2024208934 @default.
- W2893523295 cites W2032266442 @default.
- W2893523295 cites W2035112165 @default.
- W2893523295 cites W2048021967 @default.
- W2893523295 cites W2051496781 @default.
- W2893523295 cites W2051508741 @default.
- W2893523295 cites W2055992762 @default.
- W2893523295 cites W2064675550 @default.
- W2893523295 cites W2073072860 @default.
- W2893523295 cites W2098363886 @default.
- W2893523295 cites W2110953678 @default.
- W2893523295 cites W2111807801 @default.
- W2893523295 cites W2112738128 @default.
- W2893523295 cites W2116597564 @default.
- W2893523295 cites W2119777970 @default.
- W2893523295 cites W2125189556 @default.
- W2893523295 cites W2130942839 @default.
- W2893523295 cites W2133286823 @default.
- W2893523295 cites W2136317921 @default.
- W2893523295 cites W2143503258 @default.
- W2893523295 cites W2149891651 @default.
- W2893523295 cites W2159024459 @default.
- W2893523295 cites W2161523118 @default.
- W2893523295 cites W2171634212 @default.
- W2893523295 cites W2171805028 @default.
- W2893523295 cites W2245706161 @default.
- W2893523295 cites W2302086703 @default.
- W2893523295 cites W2345172924 @default.
- W2893523295 cites W2385600359 @default.
- W2893523295 cites W2394837472 @default.
- W2893523295 cites W2408569144 @default.
- W2893523295 cites W2424778531 @default.
- W2893523295 cites W2511693736 @default.
- W2893523295 cites W2617955281 @default.
- W2893523295 cites W2749061957 @default.
- W2893523295 cites W2753034091 @default.
- W2893523295 cites W2915445200 @default.
- W2893523295 cites W3121886573 @default.
- W2893523295 hasPublicationYear "2018" @default.
- W2893523295 type Work @default.
- W2893523295 sameAs 2893523295 @default.
- W2893523295 citedByCount "1" @default.
- W2893523295 countsByYear W28935232952021 @default.
- W2893523295 crossrefType "journal-article" @default.
- W2893523295 hasAuthorship W2893523295A5000590701 @default.
- W2893523295 hasConcept C108583219 @default.
- W2893523295 hasConcept C119857082 @default.
- W2893523295 hasConcept C120314980 @default.
- W2893523295 hasConcept C121332964 @default.
- W2893523295 hasConcept C124101348 @default.
- W2893523295 hasConcept C147168706 @default.
- W2893523295 hasConcept C154945302 @default.
- W2893523295 hasConcept C191485582 @default.
- W2893523295 hasConcept C207512268 @default.
- W2893523295 hasConcept C31258907 @default.
- W2893523295 hasConcept C41008148 @default.
- W2893523295 hasConcept C50644808 @default.
- W2893523295 hasConcept C61797465 @default.
- W2893523295 hasConcept C62520636 @default.
- W2893523295 hasConceptScore W2893523295C108583219 @default.
- W2893523295 hasConceptScore W2893523295C119857082 @default.
- W2893523295 hasConceptScore W2893523295C120314980 @default.
- W2893523295 hasConceptScore W2893523295C121332964 @default.
- W2893523295 hasConceptScore W2893523295C124101348 @default.
- W2893523295 hasConceptScore W2893523295C147168706 @default.
- W2893523295 hasConceptScore W2893523295C154945302 @default.
- W2893523295 hasConceptScore W2893523295C191485582 @default.
- W2893523295 hasConceptScore W2893523295C207512268 @default.
- W2893523295 hasConceptScore W2893523295C31258907 @default.
- W2893523295 hasConceptScore W2893523295C41008148 @default.
- W2893523295 hasConceptScore W2893523295C50644808 @default.
- W2893523295 hasConceptScore W2893523295C61797465 @default.
- W2893523295 hasConceptScore W2893523295C62520636 @default.
- W2893523295 hasLocation W28935232951 @default.
- W2893523295 hasOpenAccess W2893523295 @default.
- W2893523295 hasPrimaryLocation W28935232951 @default.
- W2893523295 hasRelatedWork W2769773868 @default.
- W2893523295 hasRelatedWork W2963124587 @default.