Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893529403> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2893529403 endingPage "714" @default.
- W2893529403 startingPage "708" @default.
- W2893529403 abstract "The feasibility of particle swarm optimization in fitting the Lévy noise data is examined. Lévy noise is a kind of non-Gaussian noise widely used in fractional and fractal calculus and in many other engineering applications. All type of functions, ranging from linear to polynomial and exponential, are studied after adding different levels of Lévy noise. The mean squared error is used to evaluate the particle swarm optimization performances. These performances are compared to the accuracy of the least square error. This work proves that particle swarm optimization is much more accurate than least square error, which is widely used in parameter identification for Gaussian and less appropriately used for non-Gaussian noise data. Particle swarm optimization is much more accurate than the least squares method, especially for nonlinear functions." @default.
- W2893529403 created "2018-10-05" @default.
- W2893529403 creator A5059077428 @default.
- W2893529403 creator A5083223992 @default.
- W2893529403 date "2019-01-01" @default.
- W2893529403 modified "2023-10-01" @default.
- W2893529403 title "Particle swarm optimization performance for fitting of Lévy noise data" @default.
- W2893529403 cites W1978285031 @default.
- W2893529403 cites W2011343927 @default.
- W2893529403 cites W2012021517 @default.
- W2893529403 cites W2045345437 @default.
- W2893529403 cites W2061305400 @default.
- W2893529403 cites W2089046084 @default.
- W2893529403 cites W2099134527 @default.
- W2893529403 cites W2465146196 @default.
- W2893529403 cites W2517804852 @default.
- W2893529403 cites W2597495304 @default.
- W2893529403 cites W2605864307 @default.
- W2893529403 cites W2610263825 @default.
- W2893529403 cites W2625736062 @default.
- W2893529403 cites W2761218760 @default.
- W2893529403 cites W2793547514 @default.
- W2893529403 cites W2892625118 @default.
- W2893529403 doi "https://doi.org/10.1016/j.physa.2018.09.137" @default.
- W2893529403 hasPublicationYear "2019" @default.
- W2893529403 type Work @default.
- W2893529403 sameAs 2893529403 @default.
- W2893529403 citedByCount "14" @default.
- W2893529403 countsByYear W28935294032019 @default.
- W2893529403 countsByYear W28935294032020 @default.
- W2893529403 countsByYear W28935294032021 @default.
- W2893529403 countsByYear W28935294032022 @default.
- W2893529403 crossrefType "journal-article" @default.
- W2893529403 hasAuthorship W2893529403A5059077428 @default.
- W2893529403 hasAuthorship W2893529403A5083223992 @default.
- W2893529403 hasConcept C105795698 @default.
- W2893529403 hasConcept C11413529 @default.
- W2893529403 hasConcept C115961682 @default.
- W2893529403 hasConcept C121332964 @default.
- W2893529403 hasConcept C122357587 @default.
- W2893529403 hasConcept C126255220 @default.
- W2893529403 hasConcept C134306372 @default.
- W2893529403 hasConcept C139945424 @default.
- W2893529403 hasConcept C151376022 @default.
- W2893529403 hasConcept C154945302 @default.
- W2893529403 hasConcept C163716315 @default.
- W2893529403 hasConcept C28826006 @default.
- W2893529403 hasConcept C33923547 @default.
- W2893529403 hasConcept C40636538 @default.
- W2893529403 hasConcept C41008148 @default.
- W2893529403 hasConcept C4199805 @default.
- W2893529403 hasConcept C62520636 @default.
- W2893529403 hasConcept C85617194 @default.
- W2893529403 hasConcept C90119067 @default.
- W2893529403 hasConcept C99498987 @default.
- W2893529403 hasConceptScore W2893529403C105795698 @default.
- W2893529403 hasConceptScore W2893529403C11413529 @default.
- W2893529403 hasConceptScore W2893529403C115961682 @default.
- W2893529403 hasConceptScore W2893529403C121332964 @default.
- W2893529403 hasConceptScore W2893529403C122357587 @default.
- W2893529403 hasConceptScore W2893529403C126255220 @default.
- W2893529403 hasConceptScore W2893529403C134306372 @default.
- W2893529403 hasConceptScore W2893529403C139945424 @default.
- W2893529403 hasConceptScore W2893529403C151376022 @default.
- W2893529403 hasConceptScore W2893529403C154945302 @default.
- W2893529403 hasConceptScore W2893529403C163716315 @default.
- W2893529403 hasConceptScore W2893529403C28826006 @default.
- W2893529403 hasConceptScore W2893529403C33923547 @default.
- W2893529403 hasConceptScore W2893529403C40636538 @default.
- W2893529403 hasConceptScore W2893529403C41008148 @default.
- W2893529403 hasConceptScore W2893529403C4199805 @default.
- W2893529403 hasConceptScore W2893529403C62520636 @default.
- W2893529403 hasConceptScore W2893529403C85617194 @default.
- W2893529403 hasConceptScore W2893529403C90119067 @default.
- W2893529403 hasConceptScore W2893529403C99498987 @default.
- W2893529403 hasLocation W28935294031 @default.
- W2893529403 hasOpenAccess W2893529403 @default.
- W2893529403 hasPrimaryLocation W28935294031 @default.
- W2893529403 hasRelatedWork W1747965218 @default.
- W2893529403 hasRelatedWork W1997830976 @default.
- W2893529403 hasRelatedWork W2084289551 @default.
- W2893529403 hasRelatedWork W2168185055 @default.
- W2893529403 hasRelatedWork W2322270513 @default.
- W2893529403 hasRelatedWork W2378509784 @default.
- W2893529403 hasRelatedWork W2709721424 @default.
- W2893529403 hasRelatedWork W2888146468 @default.
- W2893529403 hasRelatedWork W3002669349 @default.
- W2893529403 hasRelatedWork W3177438917 @default.
- W2893529403 hasVolume "514" @default.
- W2893529403 isParatext "false" @default.
- W2893529403 isRetracted "false" @default.
- W2893529403 magId "2893529403" @default.
- W2893529403 workType "article" @default.