Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893552484> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2893552484 endingPage "147" @default.
- W2893552484 startingPage "137" @default.
- W2893552484 abstract "Liver segmentation is a crucial step in computer-assisted diagnosis and surgical planning of liver diseases. However, it is still a quite challenging task due to four reasons. First, the grayscale of the liver and its adjacent organ tissues is similar. Second, partial volume effect makes the liver contour blurred. Third, most clinical images have serious pathology such as liver tumor. Forth, each person’s liver shape is discrepant. In this paper, we proposed DSL (detection and segmentation laboratory) method based on Faster R-CNN (faster regions with CNN features) and DeepLab. The DSL consists of two steps: to reduce the scope of subsequent liver segmentation, Faster R-CNN is employed to detect liver area. Next, the detection results are input to DeepLab for segmentation. This work is evaluated on two datasets: 3Dircadb and MICCAI-Sliver07. Compared with the state-of-the-art automatic methods, our approach has achieved better performance in terms of VOE, RVD, ASD and total score." @default.
- W2893552484 created "2018-10-05" @default.
- W2893552484 creator A5009121711 @default.
- W2893552484 creator A5043090368 @default.
- W2893552484 creator A5062537089 @default.
- W2893552484 creator A5062922419 @default.
- W2893552484 date "2018-01-01" @default.
- W2893552484 modified "2023-09-26" @default.
- W2893552484 title "DSL: Automatic Liver Segmentation with Faster R-CNN and DeepLab" @default.
- W2893552484 cites W1536680647 @default.
- W2893552484 cites W1577855134 @default.
- W2893552484 cites W1934726605 @default.
- W2893552484 cites W1957565308 @default.
- W2893552484 cites W2037116875 @default.
- W2893552484 cites W2046890031 @default.
- W2893552484 cites W2111175478 @default.
- W2893552484 cites W2123839774 @default.
- W2893552484 cites W2136537268 @default.
- W2893552484 cites W2138047924 @default.
- W2893552484 cites W2148798129 @default.
- W2893552484 cites W2153431772 @default.
- W2893552484 cites W2246352439 @default.
- W2893552484 cites W2309079319 @default.
- W2893552484 cites W2336753183 @default.
- W2893552484 cites W2357815549 @default.
- W2893552484 cites W2533753343 @default.
- W2893552484 cites W2637624075 @default.
- W2893552484 cites W639708223 @default.
- W2893552484 doi "https://doi.org/10.1007/978-3-030-01421-6_14" @default.
- W2893552484 hasPublicationYear "2018" @default.
- W2893552484 type Work @default.
- W2893552484 sameAs 2893552484 @default.
- W2893552484 citedByCount "11" @default.
- W2893552484 countsByYear W28935524842019 @default.
- W2893552484 countsByYear W28935524842020 @default.
- W2893552484 countsByYear W28935524842021 @default.
- W2893552484 countsByYear W28935524842022 @default.
- W2893552484 countsByYear W28935524842023 @default.
- W2893552484 crossrefType "book-chapter" @default.
- W2893552484 hasAuthorship W2893552484A5009121711 @default.
- W2893552484 hasAuthorship W2893552484A5043090368 @default.
- W2893552484 hasAuthorship W2893552484A5062537089 @default.
- W2893552484 hasAuthorship W2893552484A5062922419 @default.
- W2893552484 hasConcept C124504099 @default.
- W2893552484 hasConcept C153180895 @default.
- W2893552484 hasConcept C154945302 @default.
- W2893552484 hasConcept C162324750 @default.
- W2893552484 hasConcept C187736073 @default.
- W2893552484 hasConcept C201374245 @default.
- W2893552484 hasConcept C2780451532 @default.
- W2893552484 hasConcept C31972630 @default.
- W2893552484 hasConcept C41008148 @default.
- W2893552484 hasConcept C76155785 @default.
- W2893552484 hasConcept C89600930 @default.
- W2893552484 hasConceptScore W2893552484C124504099 @default.
- W2893552484 hasConceptScore W2893552484C153180895 @default.
- W2893552484 hasConceptScore W2893552484C154945302 @default.
- W2893552484 hasConceptScore W2893552484C162324750 @default.
- W2893552484 hasConceptScore W2893552484C187736073 @default.
- W2893552484 hasConceptScore W2893552484C201374245 @default.
- W2893552484 hasConceptScore W2893552484C2780451532 @default.
- W2893552484 hasConceptScore W2893552484C31972630 @default.
- W2893552484 hasConceptScore W2893552484C41008148 @default.
- W2893552484 hasConceptScore W2893552484C76155785 @default.
- W2893552484 hasConceptScore W2893552484C89600930 @default.
- W2893552484 hasLocation W28935524841 @default.
- W2893552484 hasOpenAccess W2893552484 @default.
- W2893552484 hasPrimaryLocation W28935524841 @default.
- W2893552484 hasRelatedWork W1669643531 @default.
- W2893552484 hasRelatedWork W1982826852 @default.
- W2893552484 hasRelatedWork W2005437358 @default.
- W2893552484 hasRelatedWork W2008656436 @default.
- W2893552484 hasRelatedWork W2023558673 @default.
- W2893552484 hasRelatedWork W2110230079 @default.
- W2893552484 hasRelatedWork W2134924024 @default.
- W2893552484 hasRelatedWork W2517104666 @default.
- W2893552484 hasRelatedWork W2613186388 @default.
- W2893552484 hasRelatedWork W1967061043 @default.
- W2893552484 isParatext "false" @default.
- W2893552484 isRetracted "false" @default.
- W2893552484 magId "2893552484" @default.
- W2893552484 workType "book-chapter" @default.