Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893552574> ?p ?o ?g. }
- W2893552574 abstract "Abstract Field development optimization for oil and gas reservoirs is typically challenging due to large number of control parameters, model complexity, as well as subsurface uncertainties. In this study, we propose a joint field development and well control optimization workflow using robust parameterization technique and demonstrate its application through a offshore oil field development. Traditionally, using simulation models for optimization of field development plan was considered time and cost prohibitive when incorporating models to cover range of uncertainties in reservoir properties. Consequently, the problem was simplified by reducing the number of control parameters through multi-disciplinary workflows. In this paper, we aim to optimize field development strategy by simultaneously controlling topside facility, number of wells, their trajectories, drilling sequence, and completion strategy etc., considering subsurface uncertainties and constraints. To achieve this, we used our next generation reservoir simulator and commercial cloud computing to explore the possibility of achieving an optimized development scenario within reasonable time and cost constraints. We have applied the proposed workflow to the Olympus field case, which is an optimization benchmarking problem set up by Netherland Organization for Applied Scientific Research (TNO) using a synthetic North-sea type reservoir. Our objective is to improve the net present value (NPV) after 20 years of operation by controlling the number and location of platforms, number of injectors and producers as well as their trajectories and drilling sequence. The large number of control parameters and subsurface uncertainties make the optimization process challenging. Three optimization techniques, genetic algorithm (GA), particle swarm optimization (PSO) and ensemble-based optimization (EnOpt) were tested and their performances were compared. Best results in terms of NPV improvement was obtained by using the mixed-integer Genetic Algorithm method. More than ten thousand simulation runs were required by the method to reach to optimal development of well location, trajectory, drilling sequence etc. This was made possible by utilizing a high performance parallel simulator and cloud computing. The estimated cost of the commercial cloud service is almost negligible compared with the improvement in the economic value of the optimized asset development plan. The developed workflow and parameterization technique are flexible in well trajectory configuration and completion design allowing application to primary depletion as well as waterflooding." @default.
- W2893552574 created "2018-10-05" @default.
- W2893552574 creator A5021670444 @default.
- W2893552574 creator A5026022017 @default.
- W2893552574 creator A5075444205 @default.
- W2893552574 creator A5076223613 @default.
- W2893552574 creator A5076237055 @default.
- W2893552574 creator A5085977049 @default.
- W2893552574 date "2018-09-24" @default.
- W2893552574 modified "2023-09-26" @default.
- W2893552574 title "Large Scale Field Development Optimization Using High Performance Parallel Simulation and Cloud Computing Technology" @default.
- W2893552574 cites W1983750805 @default.
- W2893552574 cites W1985343753 @default.
- W2893552574 cites W1988729251 @default.
- W2893552574 cites W1998160957 @default.
- W2893552574 cites W2011058183 @default.
- W2893552574 cites W2014143560 @default.
- W2893552574 cites W2027240355 @default.
- W2893552574 cites W2030111919 @default.
- W2893552574 cites W2073123457 @default.
- W2893552574 cites W2075705088 @default.
- W2893552574 cites W2083753356 @default.
- W2893552574 cites W2088123707 @default.
- W2893552574 cites W2098271574 @default.
- W2893552574 cites W2107206595 @default.
- W2893552574 cites W2135083566 @default.
- W2893552574 cites W2152195021 @default.
- W2893552574 cites W2154121441 @default.
- W2893552574 cites W2162021678 @default.
- W2893552574 cites W2170480532 @default.
- W2893552574 cites W2177071923 @default.
- W2893552574 cites W2604211727 @default.
- W2893552574 cites W2761349731 @default.
- W2893552574 cites W2793000144 @default.
- W2893552574 cites W4246916037 @default.
- W2893552574 cites W2064287285 @default.
- W2893552574 doi "https://doi.org/10.2118/191728-ms" @default.
- W2893552574 hasPublicationYear "2018" @default.
- W2893552574 type Work @default.
- W2893552574 sameAs 2893552574 @default.
- W2893552574 citedByCount "16" @default.
- W2893552574 countsByYear W28935525742019 @default.
- W2893552574 countsByYear W28935525742020 @default.
- W2893552574 countsByYear W28935525742021 @default.
- W2893552574 countsByYear W28935525742022 @default.
- W2893552574 countsByYear W28935525742023 @default.
- W2893552574 crossrefType "proceedings-article" @default.
- W2893552574 hasAuthorship W2893552574A5021670444 @default.
- W2893552574 hasAuthorship W2893552574A5026022017 @default.
- W2893552574 hasAuthorship W2893552574A5075444205 @default.
- W2893552574 hasAuthorship W2893552574A5076223613 @default.
- W2893552574 hasAuthorship W2893552574A5076237055 @default.
- W2893552574 hasAuthorship W2893552574A5085977049 @default.
- W2893552574 hasConcept C111919701 @default.
- W2893552574 hasConcept C11413529 @default.
- W2893552574 hasConcept C119857082 @default.
- W2893552574 hasConcept C126255220 @default.
- W2893552574 hasConcept C127413603 @default.
- W2893552574 hasConcept C144133560 @default.
- W2893552574 hasConcept C162853370 @default.
- W2893552574 hasConcept C177212765 @default.
- W2893552574 hasConcept C202444582 @default.
- W2893552574 hasConcept C25197100 @default.
- W2893552574 hasConcept C2778668878 @default.
- W2893552574 hasConcept C2778904306 @default.
- W2893552574 hasConcept C33923547 @default.
- W2893552574 hasConcept C41008148 @default.
- W2893552574 hasConcept C68781425 @default.
- W2893552574 hasConcept C77088390 @default.
- W2893552574 hasConcept C78519656 @default.
- W2893552574 hasConcept C78762247 @default.
- W2893552574 hasConcept C79974875 @default.
- W2893552574 hasConcept C85617194 @default.
- W2893552574 hasConcept C86251818 @default.
- W2893552574 hasConcept C9652623 @default.
- W2893552574 hasConceptScore W2893552574C111919701 @default.
- W2893552574 hasConceptScore W2893552574C11413529 @default.
- W2893552574 hasConceptScore W2893552574C119857082 @default.
- W2893552574 hasConceptScore W2893552574C126255220 @default.
- W2893552574 hasConceptScore W2893552574C127413603 @default.
- W2893552574 hasConceptScore W2893552574C144133560 @default.
- W2893552574 hasConceptScore W2893552574C162853370 @default.
- W2893552574 hasConceptScore W2893552574C177212765 @default.
- W2893552574 hasConceptScore W2893552574C202444582 @default.
- W2893552574 hasConceptScore W2893552574C25197100 @default.
- W2893552574 hasConceptScore W2893552574C2778668878 @default.
- W2893552574 hasConceptScore W2893552574C2778904306 @default.
- W2893552574 hasConceptScore W2893552574C33923547 @default.
- W2893552574 hasConceptScore W2893552574C41008148 @default.
- W2893552574 hasConceptScore W2893552574C68781425 @default.
- W2893552574 hasConceptScore W2893552574C77088390 @default.
- W2893552574 hasConceptScore W2893552574C78519656 @default.
- W2893552574 hasConceptScore W2893552574C78762247 @default.
- W2893552574 hasConceptScore W2893552574C79974875 @default.
- W2893552574 hasConceptScore W2893552574C85617194 @default.
- W2893552574 hasConceptScore W2893552574C86251818 @default.
- W2893552574 hasConceptScore W2893552574C9652623 @default.
- W2893552574 hasLocation W28935525741 @default.
- W2893552574 hasOpenAccess W2893552574 @default.
- W2893552574 hasPrimaryLocation W28935525741 @default.