Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893556909> ?p ?o ?g. }
- W2893556909 endingPage "1295" @default.
- W2893556909 startingPage "1280" @default.
- W2893556909 abstract "Linguistic steganography based on text carrier auto-generation technology is a current topic with great promise and challenges. Limited by the text automatic generation technology or the corresponding text coding methods, the quality of the steganographic text generated by previous methods is inferior, which makes its imperceptibility unsatisfactory. In this paper, we propose a linguistic steganography based on recurrent neural networks, which can automatically generate high-quality text covers on the basis of a secret bitstream that needs to be hidden. We trained our model with a large number of artificially generated samples and obtained a good estimate of the statistical language model. In the text generation process, we propose fixed-length coding and variable-length coding to encode words based on their conditional probability distribution. We designed several experiments to test the proposed model from the perspectives of information hiding efficiency, information imperceptibility, and information hidden capacity. The experimental results show that the proposed model outperforms all the previous related methods and achieves the state-of-the-art performance." @default.
- W2893556909 created "2018-10-05" @default.
- W2893556909 creator A5020864189 @default.
- W2893556909 creator A5041522926 @default.
- W2893556909 creator A5059247334 @default.
- W2893556909 creator A5082900330 @default.
- W2893556909 creator A5083181758 @default.
- W2893556909 date "2019-05-01" @default.
- W2893556909 modified "2023-10-16" @default.
- W2893556909 title "RNN-Stega: Linguistic Steganography Based on Recurrent Neural Networks" @default.
- W2893556909 cites W1491163994 @default.
- W2893556909 cites W1537333608 @default.
- W2893556909 cites W179875071 @default.
- W2893556909 cites W1878907771 @default.
- W2893556909 cites W1895577753 @default.
- W2893556909 cites W1975108805 @default.
- W2893556909 cites W2009867597 @default.
- W2893556909 cites W2025994941 @default.
- W2893556909 cites W2038047091 @default.
- W2893556909 cites W2060108852 @default.
- W2893556909 cites W2064675550 @default.
- W2893556909 cites W2069143585 @default.
- W2893556909 cites W2108498102 @default.
- W2893556909 cites W2109394932 @default.
- W2893556909 cites W2119990839 @default.
- W2893556909 cites W2124042115 @default.
- W2893556909 cites W2124890704 @default.
- W2893556909 cites W2126006158 @default.
- W2893556909 cites W2140075254 @default.
- W2893556909 cites W2143668817 @default.
- W2893556909 cites W2154642048 @default.
- W2893556909 cites W2157823837 @default.
- W2893556909 cites W2159390040 @default.
- W2893556909 cites W2162480666 @default.
- W2893556909 cites W2169482795 @default.
- W2893556909 cites W2294087712 @default.
- W2893556909 cites W2294426641 @default.
- W2893556909 cites W2520373190 @default.
- W2893556909 cites W2542146404 @default.
- W2893556909 cites W2586318745 @default.
- W2893556909 cites W2621053137 @default.
- W2893556909 cites W2735711430 @default.
- W2893556909 cites W2912142077 @default.
- W2893556909 cites W2963213879 @default.
- W2893556909 cites W2963963856 @default.
- W2893556909 cites W4253000688 @default.
- W2893556909 cites W4299353692 @default.
- W2893556909 doi "https://doi.org/10.1109/tifs.2018.2871746" @default.
- W2893556909 hasPublicationYear "2019" @default.
- W2893556909 type Work @default.
- W2893556909 sameAs 2893556909 @default.
- W2893556909 citedByCount "148" @default.
- W2893556909 countsByYear W28935569092019 @default.
- W2893556909 countsByYear W28935569092020 @default.
- W2893556909 countsByYear W28935569092021 @default.
- W2893556909 countsByYear W28935569092022 @default.
- W2893556909 countsByYear W28935569092023 @default.
- W2893556909 crossrefType "journal-article" @default.
- W2893556909 hasAuthorship W2893556909A5020864189 @default.
- W2893556909 hasAuthorship W2893556909A5041522926 @default.
- W2893556909 hasAuthorship W2893556909A5059247334 @default.
- W2893556909 hasAuthorship W2893556909A5082900330 @default.
- W2893556909 hasAuthorship W2893556909A5083181758 @default.
- W2893556909 hasConcept C108801101 @default.
- W2893556909 hasConcept C147168706 @default.
- W2893556909 hasConcept C154945302 @default.
- W2893556909 hasConcept C204321447 @default.
- W2893556909 hasConcept C28490314 @default.
- W2893556909 hasConcept C41008148 @default.
- W2893556909 hasConcept C41608201 @default.
- W2893556909 hasConcept C50644808 @default.
- W2893556909 hasConceptScore W2893556909C108801101 @default.
- W2893556909 hasConceptScore W2893556909C147168706 @default.
- W2893556909 hasConceptScore W2893556909C154945302 @default.
- W2893556909 hasConceptScore W2893556909C204321447 @default.
- W2893556909 hasConceptScore W2893556909C28490314 @default.
- W2893556909 hasConceptScore W2893556909C41008148 @default.
- W2893556909 hasConceptScore W2893556909C41608201 @default.
- W2893556909 hasConceptScore W2893556909C50644808 @default.
- W2893556909 hasFunder F4320321001 @default.
- W2893556909 hasIssue "5" @default.
- W2893556909 hasLocation W28935569091 @default.
- W2893556909 hasOpenAccess W2893556909 @default.
- W2893556909 hasPrimaryLocation W28935569091 @default.
- W2893556909 hasRelatedWork W1679636228 @default.
- W2893556909 hasRelatedWork W2329734087 @default.
- W2893556909 hasRelatedWork W2746217931 @default.
- W2893556909 hasRelatedWork W2883762569 @default.
- W2893556909 hasRelatedWork W2902723393 @default.
- W2893556909 hasRelatedWork W2993952339 @default.
- W2893556909 hasRelatedWork W3033395450 @default.
- W2893556909 hasRelatedWork W3175075966 @default.
- W2893556909 hasRelatedWork W4220740160 @default.
- W2893556909 hasRelatedWork W4285210947 @default.
- W2893556909 hasVolume "14" @default.
- W2893556909 isParatext "false" @default.
- W2893556909 isRetracted "false" @default.
- W2893556909 magId "2893556909" @default.