Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893568594> ?p ?o ?g. }
- W2893568594 endingPage "1542" @default.
- W2893568594 startingPage "1542" @default.
- W2893568594 abstract "This work focuses on the accuracy estimation of canopy height models (CHMs) derived from image matching of Pléiades stereo imagery over forested mountain areas. To determine the height above ground and hence canopy height in forest areas, we use normalised digital surface models (nDSMs), computed as the differences between external high-resolution digital terrain models (DTMs) and digital surface models (DSMs) from Pléiades image matching. With the overall goal of testing the operational feasibility of Pléiades images for forest monitoring over mountain areas, two questions guide this work whose answers can help in identifying the optimal acquisition planning to derive CHMs. Specifically, we want to assess (1) the benefit of using tri-stereo images instead of stereo pairs, and (2) the impact of different viewing angles and topography. To answer the first question, we acquired new Pléiades data over a study site in Canton Ticino (Switzerland), and we compare the accuracies of CHMs from Pléiades tri-stereo and from each stereo pair combination. We perform the investigation on different viewing angles over a study area near Ljubljana (Slovenia), where three stereo pairs were acquired at one-day offsets. We focus the analyses on open stable and on tree covered areas. To evaluate the accuracy of Pléiades CHMs, we use CHMs from aerial image matching and airborne laser scanning as reference for the Ticino and Ljubljana study areas, respectively. For the two study areas, the statistics of the nDSMs in stable areas show median values close to the expected value of zero. The smallest standard deviation based on the median of absolute differences (σMAD) was 0.80 m for the forward-backward image pair in Ticino and 0.29 m in Ljubljana for the stereo images with the smallest absolute across-track angle (−5.3°). The differences between the highest accuracy Pléiades CHMs and their reference CHMs show a median of 0.02 m in Ticino with a σMAD of 1.90 m and in Ljubljana a median of 0.32 m with a σMAD of 3.79 m. The discrepancies between these results are most likely attributed to differences in forest structure, particularly tree height, density, and forest gaps. Furthermore, it should be taken into account that temporal vegetational changes between the Pléiades and reference data acquisitions introduce additional, spurious CHM differences. Overall, for narrow forward–backward angle of convergence (12°) and based on the used software and workflow to generate the nDSMs from Pléiades images, the results show that the differences between tri-stereo and stereo matching are rather small in terms of accuracy and completeness of the CHM/nDSMs. Therefore, a small angle of convergence does not constitute a major limiting factor. More relevant is the impact of a large across-track angle (19°), which considerably reduces the quality of Pléiades CHMs/nDSMs." @default.
- W2893568594 created "2018-10-05" @default.
- W2893568594 creator A5000789500 @default.
- W2893568594 creator A5006891946 @default.
- W2893568594 creator A5017645389 @default.
- W2893568594 creator A5024904329 @default.
- W2893568594 creator A5027450737 @default.
- W2893568594 creator A5047318229 @default.
- W2893568594 creator A5081275712 @default.
- W2893568594 date "2018-09-25" @default.
- W2893568594 modified "2023-10-14" @default.
- W2893568594 title "Impact of the Acquisition Geometry of Very High-Resolution Pléiades Imagery on the Accuracy of Canopy Height Models over Forested Alpine Regions" @default.
- W2893568594 cites W1845944467 @default.
- W2893568594 cites W1996705598 @default.
- W2893568594 cites W1999240370 @default.
- W2893568594 cites W1999601230 @default.
- W2893568594 cites W2015598292 @default.
- W2893568594 cites W2034399075 @default.
- W2893568594 cites W2044494416 @default.
- W2893568594 cites W2054397552 @default.
- W2893568594 cites W2063759792 @default.
- W2893568594 cites W2064523518 @default.
- W2893568594 cites W2065847473 @default.
- W2893568594 cites W2088047012 @default.
- W2893568594 cites W2098805041 @default.
- W2893568594 cites W2098919237 @default.
- W2893568594 cites W2116710882 @default.
- W2893568594 cites W2147153167 @default.
- W2893568594 cites W2151203248 @default.
- W2893568594 cites W2153534477 @default.
- W2893568594 cites W2175271311 @default.
- W2893568594 cites W2289671215 @default.
- W2893568594 cites W2313260182 @default.
- W2893568594 cites W2410913786 @default.
- W2893568594 cites W2494694935 @default.
- W2893568594 cites W2507823894 @default.
- W2893568594 cites W2512156656 @default.
- W2893568594 cites W2550394927 @default.
- W2893568594 cites W2782373941 @default.
- W2893568594 cites W2790349426 @default.
- W2893568594 cites W2793342868 @default.
- W2893568594 cites W2808204710 @default.
- W2893568594 cites W2808997086 @default.
- W2893568594 cites W4243061043 @default.
- W2893568594 cites W4244102296 @default.
- W2893568594 doi "https://doi.org/10.3390/rs10101542" @default.
- W2893568594 hasPublicationYear "2018" @default.
- W2893568594 type Work @default.
- W2893568594 sameAs 2893568594 @default.
- W2893568594 citedByCount "23" @default.
- W2893568594 countsByYear W28935685942019 @default.
- W2893568594 countsByYear W28935685942020 @default.
- W2893568594 countsByYear W28935685942021 @default.
- W2893568594 countsByYear W28935685942022 @default.
- W2893568594 countsByYear W28935685942023 @default.
- W2893568594 crossrefType "journal-article" @default.
- W2893568594 hasAuthorship W2893568594A5000789500 @default.
- W2893568594 hasAuthorship W2893568594A5006891946 @default.
- W2893568594 hasAuthorship W2893568594A5017645389 @default.
- W2893568594 hasAuthorship W2893568594A5024904329 @default.
- W2893568594 hasAuthorship W2893568594A5027450737 @default.
- W2893568594 hasAuthorship W2893568594A5047318229 @default.
- W2893568594 hasAuthorship W2893568594A5081275712 @default.
- W2893568594 hasBestOaLocation W28935685941 @default.
- W2893568594 hasConcept C101000010 @default.
- W2893568594 hasConcept C105795698 @default.
- W2893568594 hasConcept C113174947 @default.
- W2893568594 hasConcept C120665830 @default.
- W2893568594 hasConcept C121332964 @default.
- W2893568594 hasConcept C134306372 @default.
- W2893568594 hasConcept C161840515 @default.
- W2893568594 hasConcept C165064840 @default.
- W2893568594 hasConcept C166957645 @default.
- W2893568594 hasConcept C181843262 @default.
- W2893568594 hasConcept C192209626 @default.
- W2893568594 hasConcept C205649164 @default.
- W2893568594 hasConcept C2983128922 @default.
- W2893568594 hasConcept C33923547 @default.
- W2893568594 hasConcept C39432304 @default.
- W2893568594 hasConcept C39807119 @default.
- W2893568594 hasConcept C41008148 @default.
- W2893568594 hasConcept C51399673 @default.
- W2893568594 hasConcept C58640448 @default.
- W2893568594 hasConcept C62649853 @default.
- W2893568594 hasConceptScore W2893568594C101000010 @default.
- W2893568594 hasConceptScore W2893568594C105795698 @default.
- W2893568594 hasConceptScore W2893568594C113174947 @default.
- W2893568594 hasConceptScore W2893568594C120665830 @default.
- W2893568594 hasConceptScore W2893568594C121332964 @default.
- W2893568594 hasConceptScore W2893568594C134306372 @default.
- W2893568594 hasConceptScore W2893568594C161840515 @default.
- W2893568594 hasConceptScore W2893568594C165064840 @default.
- W2893568594 hasConceptScore W2893568594C166957645 @default.
- W2893568594 hasConceptScore W2893568594C181843262 @default.
- W2893568594 hasConceptScore W2893568594C192209626 @default.
- W2893568594 hasConceptScore W2893568594C205649164 @default.
- W2893568594 hasConceptScore W2893568594C2983128922 @default.
- W2893568594 hasConceptScore W2893568594C33923547 @default.