Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893571872> ?p ?o ?g. }
- W2893571872 abstract "Manipulation of material properties via precise doping affords enormous tunable phenomena to explore. Recent advance shows that in the atomic and nano scales topological states of dopants play crucial roles in determining their properties. However, such determination is largely unknown due to the incredible size of topological states. Here, we present a case study of developing deep learning algorithms to predict bandgaps of boron-nitrogen pair doped graphene with arbitrary dopant topologies. A material descriptor system that enables to correlate structures with the bandgaps was developed for convolutional neuron networks (CNNs). Bandgaps calculated by the ab initio calculations and the corresponding structures were fed as input datasets to train VGG16 convolutional network, residual convolutional network, and concatenate convolutional network. Then these trained CNNs were used to predict bandgaps of doped graphene with various dopant topologies. All of them afford great prediction accuracy, showing square of the coefficient of correlation (R2) of > 90% and root-mean-square errors of ~ 0.1 eV for the predicted bandgaps. They are much better than those predicted by a shallow machine learning method - support vector machine. The transfer learning was further performed by leveraging data generated from smaller systems to improve the prediction for large systems. Success of this work provides a cornerstone for future investigation of topologically doped graphene and other 2D materials. Moreover, given ubiquitous existence of topologies in materials, this work will stimulate widespread interests in applying deep learning algorithms to topological design of materials crossing atomic, nano-, meso-, and macro- scales." @default.
- W2893571872 created "2018-10-05" @default.
- W2893571872 creator A5001967239 @default.
- W2893571872 creator A5036138363 @default.
- W2893571872 creator A5044060420 @default.
- W2893571872 creator A5048490038 @default.
- W2893571872 creator A5059405800 @default.
- W2893571872 creator A5088141052 @default.
- W2893571872 date "2018-09-28" @default.
- W2893571872 modified "2023-10-14" @default.
- W2893571872 title "Deep Learning Bandgaps of Topologically Doped Graphene" @default.
- W2893571872 cites W1204378431 @default.
- W2893571872 cites W1686810756 @default.
- W2893571872 cites W1964967193 @default.
- W2893571872 cites W1965177521 @default.
- W2893571872 cites W1965580617 @default.
- W2893571872 cites W1971260269 @default.
- W2893571872 cites W1975167049 @default.
- W2893571872 cites W1979544533 @default.
- W2893571872 cites W1981368803 @default.
- W2893571872 cites W1986649227 @default.
- W2893571872 cites W1992272072 @default.
- W2893571872 cites W2002303168 @default.
- W2893571872 cites W2022452538 @default.
- W2893571872 cites W2026017706 @default.
- W2893571872 cites W2028909142 @default.
- W2893571872 cites W2036113194 @default.
- W2893571872 cites W2071077478 @default.
- W2893571872 cites W2077970749 @default.
- W2893571872 cites W2086059592 @default.
- W2893571872 cites W2093464298 @default.
- W2893571872 cites W2097117768 @default.
- W2893571872 cites W2112796928 @default.
- W2893571872 cites W2117130368 @default.
- W2893571872 cites W2118225223 @default.
- W2893571872 cites W2119821739 @default.
- W2893571872 cites W2120145199 @default.
- W2893571872 cites W2124557609 @default.
- W2893571872 cites W2137226992 @default.
- W2893571872 cites W2149700316 @default.
- W2893571872 cites W2158118753 @default.
- W2893571872 cites W2158729432 @default.
- W2893571872 cites W2163605009 @default.
- W2893571872 cites W2165698076 @default.
- W2893571872 cites W2176412452 @default.
- W2893571872 cites W2194775991 @default.
- W2893571872 cites W2253429366 @default.
- W2893571872 cites W2261254692 @default.
- W2893571872 cites W2265158068 @default.
- W2893571872 cites W2319011926 @default.
- W2893571872 cites W2324573763 @default.
- W2893571872 cites W2337082154 @default.
- W2893571872 cites W2337110853 @default.
- W2893571872 cites W2338402873 @default.
- W2893571872 cites W2340878645 @default.
- W2893571872 cites W2343462019 @default.
- W2893571872 cites W2347129741 @default.
- W2893571872 cites W2433743436 @default.
- W2893571872 cites W2509907061 @default.
- W2893571872 cites W2555683692 @default.
- W2893571872 cites W2588689293 @default.
- W2893571872 cites W2759104979 @default.
- W2893571872 cites W2766595833 @default.
- W2893571872 cites W2768909439 @default.
- W2893571872 cites W2798195057 @default.
- W2893571872 cites W2799915630 @default.
- W2893571872 cites W2806606322 @default.
- W2893571872 cites W2919115771 @default.
- W2893571872 cites W2949117887 @default.
- W2893571872 cites W2963114540 @default.
- W2893571872 cites W2963446712 @default.
- W2893571872 doi "https://doi.org/10.48550/arxiv.1809.10860" @default.
- W2893571872 hasPublicationYear "2018" @default.
- W2893571872 type Work @default.
- W2893571872 sameAs 2893571872 @default.
- W2893571872 citedByCount "0" @default.
- W2893571872 crossrefType "posted-content" @default.
- W2893571872 hasAuthorship W2893571872A5001967239 @default.
- W2893571872 hasAuthorship W2893571872A5036138363 @default.
- W2893571872 hasAuthorship W2893571872A5044060420 @default.
- W2893571872 hasAuthorship W2893571872A5048490038 @default.
- W2893571872 hasAuthorship W2893571872A5059405800 @default.
- W2893571872 hasAuthorship W2893571872A5088141052 @default.
- W2893571872 hasBestOaLocation W28935718721 @default.
- W2893571872 hasConcept C108583219 @default.
- W2893571872 hasConcept C111919701 @default.
- W2893571872 hasConcept C119599485 @default.
- W2893571872 hasConcept C119857082 @default.
- W2893571872 hasConcept C127413603 @default.
- W2893571872 hasConcept C154945302 @default.
- W2893571872 hasConcept C171250308 @default.
- W2893571872 hasConcept C184720557 @default.
- W2893571872 hasConcept C191952053 @default.
- W2893571872 hasConcept C192562407 @default.
- W2893571872 hasConcept C199845137 @default.
- W2893571872 hasConcept C30080830 @default.
- W2893571872 hasConcept C41008148 @default.
- W2893571872 hasConcept C49040817 @default.
- W2893571872 hasConcept C57863236 @default.
- W2893571872 hasConcept C81363708 @default.