Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893574529> ?p ?o ?g. }
- W2893574529 endingPage "48764" @default.
- W2893574529 startingPage "48756" @default.
- W2893574529 abstract "Many human-centric systems have begun to use business process management technology in production. With the operation of business process management systems, more and more business process logs and human-centric data have been accumulated. However, the effective utilization and analysis of these event logs are challenges that people need to solve urgently. Process mining technology is a branch of business process management technology. It can extract process knowledge from event logs and build process models, which helps to detect and improve business processes. The current process mining algorithms are inadequate in dealing with log noise. The family of alpha-algorithms ignores the impact of noise, which is unrealistic in real-life logs. Most of the process mining algorithms that can handle noise also lack reasonable denoising thresholds. In this paper, a new assumption on noise is given. Furthermore, an anti-noise process mining algorithm that can deal with noise is proposed. The decision rules of the selective, parallel, and non-free choice structures are also given. The proposed algorithm framework discovers the process model and transforms it into a Petri network representation. We calculate the distance between traces to build the minimum spanning tree on which clusters are generated. The traces of the non-largest clusters are treated as noise, and the largest cluster is mined. Finally, the algorithm can discover the regular routing structure and solve the problem of noise. The experimental results show the correctness of the algorithm when compared with the α++ algorithm." @default.
- W2893574529 created "2018-10-05" @default.
- W2893574529 creator A5030978586 @default.
- W2893574529 creator A5055173491 @default.
- W2893574529 creator A5061363755 @default.
- W2893574529 creator A5063240711 @default.
- W2893574529 creator A5065168194 @default.
- W2893574529 creator A5075916440 @default.
- W2893574529 date "2018-01-01" @default.
- W2893574529 modified "2023-10-16" @default.
- W2893574529 title "An Anti-Noise Process Mining Algorithm Based on Minimum Spanning Tree Clustering" @default.
- W2893574529 cites W1544711603 @default.
- W2893574529 cites W1945283334 @default.
- W2893574529 cites W1984989470 @default.
- W2893574529 cites W2026798510 @default.
- W2893574529 cites W2052476220 @default.
- W2893574529 cites W2065646570 @default.
- W2893574529 cites W2070603314 @default.
- W2893574529 cites W2083970667 @default.
- W2893574529 cites W2087103691 @default.
- W2893574529 cites W2098250644 @default.
- W2893574529 cites W2100175929 @default.
- W2893574529 cites W2102863299 @default.
- W2893574529 cites W2113071192 @default.
- W2893574529 cites W2127030216 @default.
- W2893574529 cites W2134937538 @default.
- W2893574529 cites W2154259279 @default.
- W2893574529 cites W2154581711 @default.
- W2893574529 cites W2280668608 @default.
- W2893574529 cites W2296603968 @default.
- W2893574529 cites W4214651611 @default.
- W2893574529 doi "https://doi.org/10.1109/access.2018.2865540" @default.
- W2893574529 hasPublicationYear "2018" @default.
- W2893574529 type Work @default.
- W2893574529 sameAs 2893574529 @default.
- W2893574529 citedByCount "12" @default.
- W2893574529 countsByYear W28935745292019 @default.
- W2893574529 countsByYear W28935745292020 @default.
- W2893574529 countsByYear W28935745292022 @default.
- W2893574529 countsByYear W28935745292023 @default.
- W2893574529 crossrefType "journal-article" @default.
- W2893574529 hasAuthorship W2893574529A5030978586 @default.
- W2893574529 hasAuthorship W2893574529A5055173491 @default.
- W2893574529 hasAuthorship W2893574529A5061363755 @default.
- W2893574529 hasAuthorship W2893574529A5063240711 @default.
- W2893574529 hasAuthorship W2893574529A5065168194 @default.
- W2893574529 hasAuthorship W2893574529A5075916440 @default.
- W2893574529 hasBestOaLocation W28935745291 @default.
- W2893574529 hasConcept C111919701 @default.
- W2893574529 hasConcept C11413529 @default.
- W2893574529 hasConcept C115961682 @default.
- W2893574529 hasConcept C121332964 @default.
- W2893574529 hasConcept C124101348 @default.
- W2893574529 hasConcept C124670913 @default.
- W2893574529 hasConcept C144133560 @default.
- W2893574529 hasConcept C154945302 @default.
- W2893574529 hasConcept C162853370 @default.
- W2893574529 hasConcept C174998907 @default.
- W2893574529 hasConcept C207505557 @default.
- W2893574529 hasConcept C2779662365 @default.
- W2893574529 hasConcept C38677869 @default.
- W2893574529 hasConcept C41008148 @default.
- W2893574529 hasConcept C55439883 @default.
- W2893574529 hasConcept C62520636 @default.
- W2893574529 hasConcept C73555534 @default.
- W2893574529 hasConcept C80309976 @default.
- W2893574529 hasConcept C85345410 @default.
- W2893574529 hasConcept C93453677 @default.
- W2893574529 hasConcept C98045186 @default.
- W2893574529 hasConcept C99498987 @default.
- W2893574529 hasConceptScore W2893574529C111919701 @default.
- W2893574529 hasConceptScore W2893574529C11413529 @default.
- W2893574529 hasConceptScore W2893574529C115961682 @default.
- W2893574529 hasConceptScore W2893574529C121332964 @default.
- W2893574529 hasConceptScore W2893574529C124101348 @default.
- W2893574529 hasConceptScore W2893574529C124670913 @default.
- W2893574529 hasConceptScore W2893574529C144133560 @default.
- W2893574529 hasConceptScore W2893574529C154945302 @default.
- W2893574529 hasConceptScore W2893574529C162853370 @default.
- W2893574529 hasConceptScore W2893574529C174998907 @default.
- W2893574529 hasConceptScore W2893574529C207505557 @default.
- W2893574529 hasConceptScore W2893574529C2779662365 @default.
- W2893574529 hasConceptScore W2893574529C38677869 @default.
- W2893574529 hasConceptScore W2893574529C41008148 @default.
- W2893574529 hasConceptScore W2893574529C55439883 @default.
- W2893574529 hasConceptScore W2893574529C62520636 @default.
- W2893574529 hasConceptScore W2893574529C73555534 @default.
- W2893574529 hasConceptScore W2893574529C80309976 @default.
- W2893574529 hasConceptScore W2893574529C85345410 @default.
- W2893574529 hasConceptScore W2893574529C93453677 @default.
- W2893574529 hasConceptScore W2893574529C98045186 @default.
- W2893574529 hasConceptScore W2893574529C99498987 @default.
- W2893574529 hasFunder F4320321001 @default.
- W2893574529 hasLocation W28935745291 @default.
- W2893574529 hasLocation W28935745292 @default.
- W2893574529 hasOpenAccess W2893574529 @default.
- W2893574529 hasPrimaryLocation W28935745291 @default.
- W2893574529 hasRelatedWork W1559778100 @default.