Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893576720> ?p ?o ?g. }
- W2893576720 endingPage "677" @default.
- W2893576720 startingPage "667" @default.
- W2893576720 abstract "With the development of multimedia data, cross-media retrieval has become increasingly important. It can provide the retrieval results with various types of media at the same time by submitting a query of any media type. In cross-media retrieval research, feature learning for different media types is a key challenge. In the existing graph-based methods, the similarity matrix denoting the affinities of data is usually constant matrix. Actually, calculating the similarity matrix based on the distances between the instances can more accurately represent the relevance of multimedia data. Furthermore, the dimensions of the original features are usually very high, which affects the computational time of algorithms. To address the above problems, we propose a novel feature learning algorithm for cross-media data, called cross-media feature learning frame-work with semi-supervised graph regularization (FLGR). FLGR calculates the similarity matrix based on the distances between the projected instances, which can not only accurately protect the relevance of multimedia data, but also effectively reduce the computational time of the algorithm. It explores the sparse and semi-supervised regularization for different media types, and integrates them into a unified optimization problem, which boosts the performance of the algorithm. Furthermore, FLGR studies the semantic information of the original data and further improve the retrieval accuracy. Compared with the current state-of-the-art methods on two datasets, i.e., Wikipedia, XMedia, the experimental results show the effectiveness of our proposed approach." @default.
- W2893576720 created "2018-10-05" @default.
- W2893576720 creator A5011717402 @default.
- W2893576720 creator A5029721738 @default.
- W2893576720 creator A5069849278 @default.
- W2893576720 date "2018-01-01" @default.
- W2893576720 modified "2023-09-27" @default.
- W2893576720 title "Cross-Media Feature Learning Framework with Semi-supervised Graph Regularization" @default.
- W2893576720 cites W1596649971 @default.
- W2893576720 cites W1994203157 @default.
- W2893576720 cites W2004139422 @default.
- W2893576720 cites W2013535308 @default.
- W2893576720 cites W2052727801 @default.
- W2893576720 cites W2053667957 @default.
- W2893576720 cites W2106277773 @default.
- W2893576720 cites W2114456882 @default.
- W2893576720 cites W2125203709 @default.
- W2893576720 cites W2142634143 @default.
- W2893576720 cites W2210322478 @default.
- W2893576720 cites W2211092169 @default.
- W2893576720 cites W2295088417 @default.
- W2893576720 cites W2316082076 @default.
- W2893576720 cites W2552464009 @default.
- W2893576720 cites W2964181521 @default.
- W2893576720 doi "https://doi.org/10.1007/978-3-030-00776-8_61" @default.
- W2893576720 hasPublicationYear "2018" @default.
- W2893576720 type Work @default.
- W2893576720 sameAs 2893576720 @default.
- W2893576720 citedByCount "0" @default.
- W2893576720 crossrefType "book-chapter" @default.
- W2893576720 hasAuthorship W2893576720A5011717402 @default.
- W2893576720 hasAuthorship W2893576720A5029721738 @default.
- W2893576720 hasAuthorship W2893576720A5069849278 @default.
- W2893576720 hasConcept C103278499 @default.
- W2893576720 hasConcept C115961682 @default.
- W2893576720 hasConcept C119857082 @default.
- W2893576720 hasConcept C121332964 @default.
- W2893576720 hasConcept C124101348 @default.
- W2893576720 hasConcept C132525143 @default.
- W2893576720 hasConcept C138885662 @default.
- W2893576720 hasConcept C153180895 @default.
- W2893576720 hasConcept C154945302 @default.
- W2893576720 hasConcept C158154518 @default.
- W2893576720 hasConcept C158693339 @default.
- W2893576720 hasConcept C17744445 @default.
- W2893576720 hasConcept C199539241 @default.
- W2893576720 hasConcept C23123220 @default.
- W2893576720 hasConcept C2776135515 @default.
- W2893576720 hasConcept C2776401178 @default.
- W2893576720 hasConcept C2779597229 @default.
- W2893576720 hasConcept C41008148 @default.
- W2893576720 hasConcept C41895202 @default.
- W2893576720 hasConcept C42355184 @default.
- W2893576720 hasConcept C62520636 @default.
- W2893576720 hasConcept C80444323 @default.
- W2893576720 hasConceptScore W2893576720C103278499 @default.
- W2893576720 hasConceptScore W2893576720C115961682 @default.
- W2893576720 hasConceptScore W2893576720C119857082 @default.
- W2893576720 hasConceptScore W2893576720C121332964 @default.
- W2893576720 hasConceptScore W2893576720C124101348 @default.
- W2893576720 hasConceptScore W2893576720C132525143 @default.
- W2893576720 hasConceptScore W2893576720C138885662 @default.
- W2893576720 hasConceptScore W2893576720C153180895 @default.
- W2893576720 hasConceptScore W2893576720C154945302 @default.
- W2893576720 hasConceptScore W2893576720C158154518 @default.
- W2893576720 hasConceptScore W2893576720C158693339 @default.
- W2893576720 hasConceptScore W2893576720C17744445 @default.
- W2893576720 hasConceptScore W2893576720C199539241 @default.
- W2893576720 hasConceptScore W2893576720C23123220 @default.
- W2893576720 hasConceptScore W2893576720C2776135515 @default.
- W2893576720 hasConceptScore W2893576720C2776401178 @default.
- W2893576720 hasConceptScore W2893576720C2779597229 @default.
- W2893576720 hasConceptScore W2893576720C41008148 @default.
- W2893576720 hasConceptScore W2893576720C41895202 @default.
- W2893576720 hasConceptScore W2893576720C42355184 @default.
- W2893576720 hasConceptScore W2893576720C62520636 @default.
- W2893576720 hasConceptScore W2893576720C80444323 @default.
- W2893576720 hasLocation W28935767201 @default.
- W2893576720 hasOpenAccess W2893576720 @default.
- W2893576720 hasPrimaryLocation W28935767201 @default.
- W2893576720 hasRelatedWork W1964102819 @default.
- W2893576720 hasRelatedWork W2024532618 @default.
- W2893576720 hasRelatedWork W2036004638 @default.
- W2893576720 hasRelatedWork W2075460102 @default.
- W2893576720 hasRelatedWork W2241759795 @default.
- W2893576720 hasRelatedWork W2335817207 @default.
- W2893576720 hasRelatedWork W2398633419 @default.
- W2893576720 hasRelatedWork W2725249286 @default.
- W2893576720 hasRelatedWork W2739759426 @default.
- W2893576720 hasRelatedWork W2800086785 @default.
- W2893576720 hasRelatedWork W2889373158 @default.
- W2893576720 hasRelatedWork W2897135094 @default.
- W2893576720 hasRelatedWork W2897184500 @default.
- W2893576720 hasRelatedWork W2902992667 @default.
- W2893576720 hasRelatedWork W2903748561 @default.
- W2893576720 hasRelatedWork W2949777502 @default.
- W2893576720 hasRelatedWork W2995624411 @default.
- W2893576720 hasRelatedWork W3005273389 @default.