Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893577296> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2893577296 abstract "The imbalanced classification problem is often a problem in classification tasks where one class contains a few samples while the other contains a great deal of samples. When the traditional machine learning classification method is applied to the imbalanced data set, the classification performance is bad and the time cost is high. As a result, mini batch with cluster distribution K-means (MBCDK-means) undersampling method and GA-ANN model is proposed in this paper to solve these two problems. MBCDK-means chooses the samples according to the clusters distribution and the distance from the majority class clusters to the minority class cluster center. This technology can keep the original distribution of cluster and increase the sampling rate of boundary samples. It is helpful to improve the final classification performance. At the same time, compared with the classic K-means clustering undersampling method, the presented MBCDK-means undersampling method has lower time complexity. Artificial neural network (ANN) is widely used in data classification but it is easily trapped in a local minimum. Genetic algorithm artificial neural network (GA-ANN), which uses genetic algorithm to optimize the weight and bias of neural network, is raised because of this. GA-ANN achieves better performance than ANN. Experimental results on 8 data sets show the effectiveness of the proposed algorithm." @default.
- W2893577296 created "2018-10-05" @default.
- W2893577296 creator A5069494139 @default.
- W2893577296 creator A5078215544 @default.
- W2893577296 date "2018-01-01" @default.
- W2893577296 modified "2023-09-27" @default.
- W2893577296 title "Imbalanced Data Classification Based on MBCDK-means Undersampling and GA-ANN" @default.
- W2893577296 cites W1591261915 @default.
- W2893577296 cites W175634338 @default.
- W2893577296 cites W1993220166 @default.
- W2893577296 cites W2132791018 @default.
- W2893577296 cites W2137029138 @default.
- W2893577296 cites W2148143831 @default.
- W2893577296 cites W2338318698 @default.
- W2893577296 cites W2612634114 @default.
- W2893577296 cites W2758113456 @default.
- W2893577296 doi "https://doi.org/10.1007/978-3-030-01421-6_34" @default.
- W2893577296 hasPublicationYear "2018" @default.
- W2893577296 type Work @default.
- W2893577296 sameAs 2893577296 @default.
- W2893577296 citedByCount "1" @default.
- W2893577296 countsByYear W28935772962020 @default.
- W2893577296 crossrefType "book-chapter" @default.
- W2893577296 hasAuthorship W2893577296A5069494139 @default.
- W2893577296 hasAuthorship W2893577296A5078215544 @default.
- W2893577296 hasConcept C119857082 @default.
- W2893577296 hasConcept C124101348 @default.
- W2893577296 hasConcept C136536468 @default.
- W2893577296 hasConcept C153180895 @default.
- W2893577296 hasConcept C154945302 @default.
- W2893577296 hasConcept C2777212361 @default.
- W2893577296 hasConcept C41008148 @default.
- W2893577296 hasConcept C50644808 @default.
- W2893577296 hasConcept C73555534 @default.
- W2893577296 hasConcept C8880873 @default.
- W2893577296 hasConceptScore W2893577296C119857082 @default.
- W2893577296 hasConceptScore W2893577296C124101348 @default.
- W2893577296 hasConceptScore W2893577296C136536468 @default.
- W2893577296 hasConceptScore W2893577296C153180895 @default.
- W2893577296 hasConceptScore W2893577296C154945302 @default.
- W2893577296 hasConceptScore W2893577296C2777212361 @default.
- W2893577296 hasConceptScore W2893577296C41008148 @default.
- W2893577296 hasConceptScore W2893577296C50644808 @default.
- W2893577296 hasConceptScore W2893577296C73555534 @default.
- W2893577296 hasConceptScore W2893577296C8880873 @default.
- W2893577296 hasLocation W28935772961 @default.
- W2893577296 hasOpenAccess W2893577296 @default.
- W2893577296 hasPrimaryLocation W28935772961 @default.
- W2893577296 hasRelatedWork W1581587400 @default.
- W2893577296 hasRelatedWork W1888796568 @default.
- W2893577296 hasRelatedWork W1983940992 @default.
- W2893577296 hasRelatedWork W2018603845 @default.
- W2893577296 hasRelatedWork W2049806947 @default.
- W2893577296 hasRelatedWork W2168025622 @default.
- W2893577296 hasRelatedWork W2353727593 @default.
- W2893577296 hasRelatedWork W2366561223 @default.
- W2893577296 hasRelatedWork W2792289039 @default.
- W2893577296 hasRelatedWork W2801342541 @default.
- W2893577296 hasRelatedWork W2810255447 @default.
- W2893577296 hasRelatedWork W2885975229 @default.
- W2893577296 hasRelatedWork W2896515364 @default.
- W2893577296 hasRelatedWork W2900770746 @default.
- W2893577296 hasRelatedWork W2909282250 @default.
- W2893577296 hasRelatedWork W2944188749 @default.
- W2893577296 hasRelatedWork W2945231434 @default.
- W2893577296 hasRelatedWork W2968337214 @default.
- W2893577296 hasRelatedWork W2989775950 @default.
- W2893577296 hasRelatedWork W3019034459 @default.
- W2893577296 isParatext "false" @default.
- W2893577296 isRetracted "false" @default.
- W2893577296 magId "2893577296" @default.
- W2893577296 workType "book-chapter" @default.