Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893624886> ?p ?o ?g. }
- W2893624886 abstract "The integration of satellite-derived aerosol optical depth (AOD) and station-measured PM2.5 provides a promising approach for obtaining spatial PM2.5 data. Several spatiotemporal models, which considered spatial and temporal heterogeneities of AOD-PM2.5 relationship, have been widely adopted for PM2.5 estimation. However, they generally described the complex AOD-PM2.5 relationship based on a linear hypothesis. Previous machine learning models yielded great superiorities for fitting the nonlinear AOD-PM2.5 relationship, but seldom allowed for its spatiotemporal variations. To simultaneously consider the nonlinearity and spatiotemporal heterogeneities of AOD-PM2.5 relationship, geographically and temporally weighted neural networks (GTWNNs) were developed for satellite-based estimation of ground-level PM2.5 in this study. Using satellite AOD products, NDVI data, and meteorological factors over China as input, GTWNNs were set up with station PM2.5 measurements. Then the spatial PM2.5 data of those locations with no ground stations could be obtained. The proposed GTWNNs have achieved a better performance compared with previous spatiotemporal models, i.e., daily geographically weighted regression and geographically and temporally weighted regression. The sample-based and site-based cross-validation R2 values of GTWNNs are 0.80 and 0.79, respectively. On this basis, the spatial PM2.5 data with a resolution of 0.1 degree were generated in China. This study implemented the combination of geographical law and neural networks, and improved the accuracy of satellite-based PM2.5 estimation." @default.
- W2893624886 created "2018-10-05" @default.
- W2893624886 creator A5036283525 @default.
- W2893624886 creator A5047576305 @default.
- W2893624886 creator A5048117999 @default.
- W2893624886 creator A5064776886 @default.
- W2893624886 date "2018-09-26" @default.
- W2893624886 modified "2023-10-16" @default.
- W2893624886 title "Geographically and temporally weighted neural networks for satellite-based mapping of ground-level PM2.5" @default.
- W2893624886 cites W1599651906 @default.
- W2893624886 cites W1974279982 @default.
- W2893624886 cites W2014926829 @default.
- W2893624886 cites W2031061930 @default.
- W2893624886 cites W2067129339 @default.
- W2893624886 cites W2073610295 @default.
- W2893624886 cites W2075193147 @default.
- W2893624886 cites W2079596572 @default.
- W2893624886 cites W2103977502 @default.
- W2893624886 cites W2108079253 @default.
- W2893624886 cites W2108162680 @default.
- W2893624886 cites W2108896901 @default.
- W2893624886 cites W2110673467 @default.
- W2893624886 cites W2119362352 @default.
- W2893624886 cites W2122490284 @default.
- W2893624886 cites W2131310754 @default.
- W2893624886 cites W2132797698 @default.
- W2893624886 cites W2149723649 @default.
- W2893624886 cites W2158143121 @default.
- W2893624886 cites W2162982697 @default.
- W2893624886 cites W2202387136 @default.
- W2893624886 cites W2272706126 @default.
- W2893624886 cites W2297827415 @default.
- W2893624886 cites W2301552301 @default.
- W2893624886 cites W2306844409 @default.
- W2893624886 cites W2310114729 @default.
- W2893624886 cites W2312602772 @default.
- W2893624886 cites W2402894798 @default.
- W2893624886 cites W2480175994 @default.
- W2893624886 cites W2516758599 @default.
- W2893624886 cites W2587800593 @default.
- W2893624886 cites W2588978790 @default.
- W2893624886 cites W2594626679 @default.
- W2893624886 cites W2623406985 @default.
- W2893624886 cites W2745393078 @default.
- W2893624886 cites W2776069591 @default.
- W2893624886 cites W2791696953 @default.
- W2893624886 cites W2792404378 @default.
- W2893624886 cites W2886563141 @default.
- W2893624886 cites W2890015417 @default.
- W2893624886 cites W3105234146 @default.
- W2893624886 cites W3122817556 @default.
- W2893624886 doi "https://doi.org/10.48550/arxiv.1809.09860" @default.
- W2893624886 hasPublicationYear "2018" @default.
- W2893624886 type Work @default.
- W2893624886 sameAs 2893624886 @default.
- W2893624886 citedByCount "0" @default.
- W2893624886 crossrefType "posted-content" @default.
- W2893624886 hasAuthorship W2893624886A5036283525 @default.
- W2893624886 hasAuthorship W2893624886A5047576305 @default.
- W2893624886 hasAuthorship W2893624886A5048117999 @default.
- W2893624886 hasAuthorship W2893624886A5064776886 @default.
- W2893624886 hasBestOaLocation W28936248861 @default.
- W2893624886 hasConcept C119857082 @default.
- W2893624886 hasConcept C127413603 @default.
- W2893624886 hasConcept C146978453 @default.
- W2893624886 hasConcept C154945302 @default.
- W2893624886 hasConcept C19269812 @default.
- W2893624886 hasConcept C205649164 @default.
- W2893624886 hasConcept C39432304 @default.
- W2893624886 hasConcept C41008148 @default.
- W2893624886 hasConcept C48921125 @default.
- W2893624886 hasConcept C50644808 @default.
- W2893624886 hasConcept C58489278 @default.
- W2893624886 hasConcept C62649853 @default.
- W2893624886 hasConceptScore W2893624886C119857082 @default.
- W2893624886 hasConceptScore W2893624886C127413603 @default.
- W2893624886 hasConceptScore W2893624886C146978453 @default.
- W2893624886 hasConceptScore W2893624886C154945302 @default.
- W2893624886 hasConceptScore W2893624886C19269812 @default.
- W2893624886 hasConceptScore W2893624886C205649164 @default.
- W2893624886 hasConceptScore W2893624886C39432304 @default.
- W2893624886 hasConceptScore W2893624886C41008148 @default.
- W2893624886 hasConceptScore W2893624886C48921125 @default.
- W2893624886 hasConceptScore W2893624886C50644808 @default.
- W2893624886 hasConceptScore W2893624886C58489278 @default.
- W2893624886 hasConceptScore W2893624886C62649853 @default.
- W2893624886 hasLocation W28936248861 @default.
- W2893624886 hasOpenAccess W2893624886 @default.
- W2893624886 hasPrimaryLocation W28936248861 @default.
- W2893624886 hasRelatedWork W1618102658 @default.
- W2893624886 hasRelatedWork W179602856 @default.
- W2893624886 hasRelatedWork W2013329914 @default.
- W2893624886 hasRelatedWork W2084732496 @default.
- W2893624886 hasRelatedWork W2121524756 @default.
- W2893624886 hasRelatedWork W2392383081 @default.
- W2893624886 hasRelatedWork W2633218168 @default.
- W2893624886 hasRelatedWork W4200162610 @default.
- W2893624886 hasRelatedWork W4205376403 @default.
- W2893624886 hasRelatedWork W782553550 @default.
- W2893624886 isParatext "false" @default.