Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893632430> ?p ?o ?g. }
- W2893632430 endingPage "409" @default.
- W2893632430 startingPage "396" @default.
- W2893632430 abstract "The analog-to-digital converter (ADC) is a principal component in every data acquisition system. Unfortunately, modern ADCs tradeoff speed, power, and accuracy. In this paper, novel neuroinspired approaches are used to design a smart ADC that could be trained in real time for general purpose applications and break through conventional ADC limitations. Motivated by artificial intelligent learning algorithms and neural network architectures, the proposed ADC integrates emerging memristor technology with CMOS. We design a trainable four-bit ADC with a memristive neural network that implements the online gradient descent algorithm. This supervised machine learning algorithm fits multiple application specifications such as full-scale voltage ranges and sampling frequencies. Theoretical analysis, as well as simulation results, demonstrate highly powerful collective properties, including reconfiguration, mismatch self-calibration, adaptation to dynamic voltage and frequency scaling, noise tolerance, and power consumption optimization. The proposed ADC achieves 8.25 fJ/conv FOM, 3.7 ENOB, 0.4 LSB INL, and 0.5 LSB DNL. These promising properties make it a leading contender for general purpose and emerging data driven applications." @default.
- W2893632430 created "2018-10-05" @default.
- W2893632430 creator A5014138496 @default.
- W2893632430 creator A5035176203 @default.
- W2893632430 creator A5053912098 @default.
- W2893632430 creator A5078077011 @default.
- W2893632430 date "2018-10-01" @default.
- W2893632430 modified "2023-10-16" @default.
- W2893632430 title "Breaking Through the Speed-Power-Accuracy Tradeoff in ADCs Using a Memristive Neuromorphic Architecture" @default.
- W2893632430 cites W1542981317 @default.
- W2893632430 cites W1578783943 @default.
- W2893632430 cites W1964288235 @default.
- W2893632430 cites W1968632892 @default.
- W2893632430 cites W1989068153 @default.
- W2893632430 cites W2002016471 @default.
- W2893632430 cites W2004823737 @default.
- W2893632430 cites W2010526455 @default.
- W2893632430 cites W2013640190 @default.
- W2893632430 cites W2016922062 @default.
- W2893632430 cites W2038634982 @default.
- W2893632430 cites W2049986605 @default.
- W2893632430 cites W2078765251 @default.
- W2893632430 cites W2085618053 @default.
- W2893632430 cites W2088964664 @default.
- W2893632430 cites W2099063429 @default.
- W2893632430 cites W2101091847 @default.
- W2893632430 cites W2102227134 @default.
- W2893632430 cites W2108619270 @default.
- W2893632430 cites W2112246162 @default.
- W2893632430 cites W2116259283 @default.
- W2893632430 cites W2116424792 @default.
- W2893632430 cites W2116967254 @default.
- W2893632430 cites W2117408462 @default.
- W2893632430 cites W2121064265 @default.
- W2893632430 cites W2121638644 @default.
- W2893632430 cites W2124963265 @default.
- W2893632430 cites W2125010820 @default.
- W2893632430 cites W2125358031 @default.
- W2893632430 cites W2128084896 @default.
- W2893632430 cites W2134179788 @default.
- W2893632430 cites W2138674422 @default.
- W2893632430 cites W2147881255 @default.
- W2893632430 cites W2150534338 @default.
- W2893632430 cites W2152881152 @default.
- W2893632430 cites W2163359472 @default.
- W2893632430 cites W2163630896 @default.
- W2893632430 cites W2167221365 @default.
- W2893632430 cites W2167728023 @default.
- W2893632430 cites W2235148767 @default.
- W2893632430 cites W2245173025 @default.
- W2893632430 cites W2775287718 @default.
- W2893632430 cites W3099088829 @default.
- W2893632430 cites W51782630 @default.
- W2893632430 doi "https://doi.org/10.1109/tetci.2018.2849109" @default.
- W2893632430 hasPublicationYear "2018" @default.
- W2893632430 type Work @default.
- W2893632430 sameAs 2893632430 @default.
- W2893632430 citedByCount "39" @default.
- W2893632430 countsByYear W28936324302018 @default.
- W2893632430 countsByYear W28936324302019 @default.
- W2893632430 countsByYear W28936324302020 @default.
- W2893632430 countsByYear W28936324302021 @default.
- W2893632430 countsByYear W28936324302022 @default.
- W2893632430 countsByYear W28936324302023 @default.
- W2893632430 crossrefType "journal-article" @default.
- W2893632430 hasAuthorship W2893632430A5014138496 @default.
- W2893632430 hasAuthorship W2893632430A5035176203 @default.
- W2893632430 hasAuthorship W2893632430A5053912098 @default.
- W2893632430 hasAuthorship W2893632430A5078077011 @default.
- W2893632430 hasBestOaLocation W28936324301 @default.
- W2893632430 hasConcept C119701452 @default.
- W2893632430 hasConcept C127413603 @default.
- W2893632430 hasConcept C149635348 @default.
- W2893632430 hasConcept C150072547 @default.
- W2893632430 hasConcept C151927369 @default.
- W2893632430 hasConcept C154945302 @default.
- W2893632430 hasConcept C16671190 @default.
- W2893632430 hasConcept C24326235 @default.
- W2893632430 hasConcept C41008148 @default.
- W2893632430 hasConcept C46362747 @default.
- W2893632430 hasConcept C50644808 @default.
- W2893632430 hasConceptScore W2893632430C119701452 @default.
- W2893632430 hasConceptScore W2893632430C127413603 @default.
- W2893632430 hasConceptScore W2893632430C149635348 @default.
- W2893632430 hasConceptScore W2893632430C150072547 @default.
- W2893632430 hasConceptScore W2893632430C151927369 @default.
- W2893632430 hasConceptScore W2893632430C154945302 @default.
- W2893632430 hasConceptScore W2893632430C16671190 @default.
- W2893632430 hasConceptScore W2893632430C24326235 @default.
- W2893632430 hasConceptScore W2893632430C41008148 @default.
- W2893632430 hasConceptScore W2893632430C46362747 @default.
- W2893632430 hasConceptScore W2893632430C50644808 @default.
- W2893632430 hasIssue "5" @default.
- W2893632430 hasLocation W28936324301 @default.
- W2893632430 hasOpenAccess W2893632430 @default.
- W2893632430 hasPrimaryLocation W28936324301 @default.
- W2893632430 hasRelatedWork W2138923007 @default.
- W2893632430 hasRelatedWork W2541074243 @default.