Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893637201> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2893637201 abstract "Abstract Given the near ubiquity of fiber-optic, information and communication technologies in reservoir and well management, there is a significant need for one-stop shop downhole distributed sensing data analysis methods together with machine learning techniques towards autonomous analysis of such data sources. However, traditional approaches of converting distributed temperature sensor (DTS) data to actionable insights for optimizing gas lift well operations management remain dependent on training based on human annotations. Annotation of downhole distributed temperature sensor data is a laborious task that is not feasible in practice to train a big data classification algorithm for accurate and reliable anomaly detection of gas lift valves. Furthermore, even obtaining training examples for event diagnosis is challenging due to the rarity of some gas lift valve problems. In gas lift well surveillance, it is essential to generate real-time results to allow a swift response by an engineer to prevent harmful consequences of gas lift valve failure onsets on well performance. The online learning capabilities, also mean that the data classification model can be continuously updated to accommodate reservoir changes in the well environment. In this paper, we propose a novel online real-time DTS data visual analytics platform for gas lift wells using big data tools. The proposed system combines Apache Kafka for data ingestion, Apache Spark for in-memory data processing and analytics, Apache Cassandra for storing raw data and processed results, and INT geo toolkit for data visualization. Specifically, the data analytics pipeline uses data mining algorithms to statistically learn features from the DTS measurements. The learned features are used as inputs to a k-means algorithm and then use supervised learning to predict the performance status of gas lift valves and raise alarms based on analytics-based intelligent warning system. The performance of the proposed system architecture for detecting gas lift valve anomaly is evaluated under varying deployment scenarios. To the best of our knowledge, DTS data analytics pipeline system has not been used for real-time anomaly detection in gas lift well operations." @default.
- W2893637201 created "2018-10-05" @default.
- W2893637201 creator A5018063039 @default.
- W2893637201 creator A5028422855 @default.
- W2893637201 creator A5029684873 @default.
- W2893637201 creator A5049065276 @default.
- W2893637201 creator A5059260023 @default.
- W2893637201 creator A5061020386 @default.
- W2893637201 creator A5080057542 @default.
- W2893637201 date "2018-09-24" @default.
- W2893637201 modified "2023-09-30" @default.
- W2893637201 title "Integrating Downhole Temperature Sensing Datasets and Visual Analytics for Improved Gas Lift Well Surveillance" @default.
- W2893637201 cites W2036918491 @default.
- W2893637201 cites W2048202762 @default.
- W2893637201 cites W2089741653 @default.
- W2893637201 cites W2467861610 @default.
- W2893637201 cites W2600859289 @default.
- W2893637201 cites W2610619874 @default.
- W2893637201 doi "https://doi.org/10.2118/191626-ms" @default.
- W2893637201 hasPublicationYear "2018" @default.
- W2893637201 type Work @default.
- W2893637201 sameAs 2893637201 @default.
- W2893637201 citedByCount "4" @default.
- W2893637201 countsByYear W28936372012019 @default.
- W2893637201 countsByYear W28936372012020 @default.
- W2893637201 countsByYear W28936372012021 @default.
- W2893637201 crossrefType "proceedings-article" @default.
- W2893637201 hasAuthorship W2893637201A5018063039 @default.
- W2893637201 hasAuthorship W2893637201A5028422855 @default.
- W2893637201 hasAuthorship W2893637201A5029684873 @default.
- W2893637201 hasAuthorship W2893637201A5049065276 @default.
- W2893637201 hasAuthorship W2893637201A5059260023 @default.
- W2893637201 hasAuthorship W2893637201A5061020386 @default.
- W2893637201 hasAuthorship W2893637201A5080057542 @default.
- W2893637201 hasConcept C111919701 @default.
- W2893637201 hasConcept C124101348 @default.
- W2893637201 hasConcept C127413603 @default.
- W2893637201 hasConcept C139002025 @default.
- W2893637201 hasConcept C172367668 @default.
- W2893637201 hasConcept C175801342 @default.
- W2893637201 hasConcept C199360897 @default.
- W2893637201 hasConcept C2778163939 @default.
- W2893637201 hasConcept C2781215313 @default.
- W2893637201 hasConcept C36464697 @default.
- W2893637201 hasConcept C41008148 @default.
- W2893637201 hasConcept C43521106 @default.
- W2893637201 hasConcept C739882 @default.
- W2893637201 hasConcept C75684735 @default.
- W2893637201 hasConcept C78762247 @default.
- W2893637201 hasConcept C79158427 @default.
- W2893637201 hasConcept C79403827 @default.
- W2893637201 hasConceptScore W2893637201C111919701 @default.
- W2893637201 hasConceptScore W2893637201C124101348 @default.
- W2893637201 hasConceptScore W2893637201C127413603 @default.
- W2893637201 hasConceptScore W2893637201C139002025 @default.
- W2893637201 hasConceptScore W2893637201C172367668 @default.
- W2893637201 hasConceptScore W2893637201C175801342 @default.
- W2893637201 hasConceptScore W2893637201C199360897 @default.
- W2893637201 hasConceptScore W2893637201C2778163939 @default.
- W2893637201 hasConceptScore W2893637201C2781215313 @default.
- W2893637201 hasConceptScore W2893637201C36464697 @default.
- W2893637201 hasConceptScore W2893637201C41008148 @default.
- W2893637201 hasConceptScore W2893637201C43521106 @default.
- W2893637201 hasConceptScore W2893637201C739882 @default.
- W2893637201 hasConceptScore W2893637201C75684735 @default.
- W2893637201 hasConceptScore W2893637201C78762247 @default.
- W2893637201 hasConceptScore W2893637201C79158427 @default.
- W2893637201 hasConceptScore W2893637201C79403827 @default.
- W2893637201 hasLocation W28936372011 @default.
- W2893637201 hasOpenAccess W2893637201 @default.
- W2893637201 hasPrimaryLocation W28936372011 @default.
- W2893637201 hasRelatedWork W2769430831 @default.
- W2893637201 hasRelatedWork W2920997070 @default.
- W2893637201 hasRelatedWork W2953793907 @default.
- W2893637201 hasRelatedWork W3039881005 @default.
- W2893637201 hasRelatedWork W3177086633 @default.
- W2893637201 hasRelatedWork W3191926225 @default.
- W2893637201 hasRelatedWork W4205787031 @default.
- W2893637201 hasRelatedWork W4206451144 @default.
- W2893637201 hasRelatedWork W4226411239 @default.
- W2893637201 hasRelatedWork W4312118298 @default.
- W2893637201 isParatext "false" @default.
- W2893637201 isRetracted "false" @default.
- W2893637201 magId "2893637201" @default.
- W2893637201 workType "article" @default.