Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893640826> ?p ?o ?g. }
- W2893640826 endingPage "64" @default.
- W2893640826 startingPage "52" @default.
- W2893640826 abstract "In knowledge discovery studies, association rules mining has been extensively studied to discover hidden knowledge and relationships among set of items in a transactional dataset. Most research on association rule mining focuses on discovering frequent patterns based on the most frequent items occurring in the dataset. However, the process of extracting rare rules has received less attention. In medical dataset studies, the discovery of rare association rules (RARs) is more challenging, because it could likely be used to obtain more potentially rare and unusual knowledge for physicians, beside frequent association rules. Hence, the aim of this paper is to discover non-frequent or rare-unusual association rules (RUARs) from a stroke medical dataset to provide potential meaningful knowledge to the user domain. A discretization method needs to be performed as the data preprocessing step before generating rules. To the best of our knowledge, fewer studies have focused on the role of discretization results to support the extraction of a better amount and quality of RUARs, particularly for medical datasets. In addition, the extracted RUARs is expected to provide potential new unusual insights on stroke risk patterns. This paper applies mutual information measure to discretize a stroke examination dataset collected from a medical center in Taiwan. The interval merging method was proposed to simplify the discrete form and enrich the quality of generated rules. Towards the end, rare association rules, with relatively low support, were generated by employing the Apriori-Rare method accordingly. In addition, a filtering process was applied to the content of the rule itemsets to discover the expected set of RUARs for physicians. Furthermore, the extracted RUARs was analyzed based on the relative risk values toward the occurrence of stroke. Results indicated that the mutual information discretization outperformed the traditional discretization methods in terms of how the discretization scheme can support the extraction of RUARs with a better quantity and quality measurements for further analysis purpose in medical point of view. Moreover, the proposed method had a relatively higher number of RUARs. The knowledge of unusual rule patterns from rare association rules might provide potential new and unusual insights for medical pratitioners and increase the awareness of stroke examination results." @default.
- W2893640826 created "2018-10-05" @default.
- W2893640826 creator A5068457792 @default.
- W2893640826 creator A5085618127 @default.
- W2893640826 creator A5089189158 @default.
- W2893640826 date "2019-03-01" @default.
- W2893640826 modified "2023-09-30" @default.
- W2893640826 title "Applying mutual information for discretization to support the discovery of rare-unusual association rule in cerebrovascular examination dataset" @default.
- W2893640826 cites W1222091493 @default.
- W2893640826 cites W1759972030 @default.
- W2893640826 cites W1925780200 @default.
- W2893640826 cites W1972527308 @default.
- W2893640826 cites W1973036367 @default.
- W2893640826 cites W1977157385 @default.
- W2893640826 cites W1991314153 @default.
- W2893640826 cites W1993691738 @default.
- W2893640826 cites W2040509189 @default.
- W2893640826 cites W2040714331 @default.
- W2893640826 cites W2060015714 @default.
- W2893640826 cites W2080056609 @default.
- W2893640826 cites W2080084655 @default.
- W2893640826 cites W2080265874 @default.
- W2893640826 cites W2088456744 @default.
- W2893640826 cites W2091178934 @default.
- W2893640826 cites W2098798985 @default.
- W2893640826 cites W2100213646 @default.
- W2893640826 cites W2110715906 @default.
- W2893640826 cites W2140278658 @default.
- W2893640826 cites W2142333371 @default.
- W2893640826 cites W2148728833 @default.
- W2893640826 cites W2157242268 @default.
- W2893640826 cites W2179817934 @default.
- W2893640826 cites W2249325465 @default.
- W2893640826 cites W2281587067 @default.
- W2893640826 cites W2344611189 @default.
- W2893640826 cites W2420451745 @default.
- W2893640826 cites W2533095659 @default.
- W2893640826 cites W2696141303 @default.
- W2893640826 cites W2758942695 @default.
- W2893640826 cites W2793345320 @default.
- W2893640826 cites W78245881 @default.
- W2893640826 doi "https://doi.org/10.1016/j.eswa.2018.09.044" @default.
- W2893640826 hasPublicationYear "2019" @default.
- W2893640826 type Work @default.
- W2893640826 sameAs 2893640826 @default.
- W2893640826 citedByCount "12" @default.
- W2893640826 countsByYear W28936408262019 @default.
- W2893640826 countsByYear W28936408262020 @default.
- W2893640826 countsByYear W28936408262021 @default.
- W2893640826 countsByYear W28936408262022 @default.
- W2893640826 countsByYear W28936408262023 @default.
- W2893640826 crossrefType "journal-article" @default.
- W2893640826 hasAuthorship W2893640826A5068457792 @default.
- W2893640826 hasAuthorship W2893640826A5085618127 @default.
- W2893640826 hasAuthorship W2893640826A5089189158 @default.
- W2893640826 hasConcept C105445830 @default.
- W2893640826 hasConcept C111472728 @default.
- W2893640826 hasConcept C111919701 @default.
- W2893640826 hasConcept C119857082 @default.
- W2893640826 hasConcept C120567893 @default.
- W2893640826 hasConcept C124101348 @default.
- W2893640826 hasConcept C134306372 @default.
- W2893640826 hasConcept C138885662 @default.
- W2893640826 hasConcept C142853389 @default.
- W2893640826 hasConcept C154945302 @default.
- W2893640826 hasConcept C177264268 @default.
- W2893640826 hasConcept C193524817 @default.
- W2893640826 hasConcept C199360897 @default.
- W2893640826 hasConcept C207685749 @default.
- W2893640826 hasConcept C2779530757 @default.
- W2893640826 hasConcept C33923547 @default.
- W2893640826 hasConcept C34736171 @default.
- W2893640826 hasConcept C41008148 @default.
- W2893640826 hasConcept C73000952 @default.
- W2893640826 hasConcept C75553542 @default.
- W2893640826 hasConcept C81440476 @default.
- W2893640826 hasConcept C98045186 @default.
- W2893640826 hasConceptScore W2893640826C105445830 @default.
- W2893640826 hasConceptScore W2893640826C111472728 @default.
- W2893640826 hasConceptScore W2893640826C111919701 @default.
- W2893640826 hasConceptScore W2893640826C119857082 @default.
- W2893640826 hasConceptScore W2893640826C120567893 @default.
- W2893640826 hasConceptScore W2893640826C124101348 @default.
- W2893640826 hasConceptScore W2893640826C134306372 @default.
- W2893640826 hasConceptScore W2893640826C138885662 @default.
- W2893640826 hasConceptScore W2893640826C142853389 @default.
- W2893640826 hasConceptScore W2893640826C154945302 @default.
- W2893640826 hasConceptScore W2893640826C177264268 @default.
- W2893640826 hasConceptScore W2893640826C193524817 @default.
- W2893640826 hasConceptScore W2893640826C199360897 @default.
- W2893640826 hasConceptScore W2893640826C207685749 @default.
- W2893640826 hasConceptScore W2893640826C2779530757 @default.
- W2893640826 hasConceptScore W2893640826C33923547 @default.
- W2893640826 hasConceptScore W2893640826C34736171 @default.
- W2893640826 hasConceptScore W2893640826C41008148 @default.
- W2893640826 hasConceptScore W2893640826C73000952 @default.
- W2893640826 hasConceptScore W2893640826C75553542 @default.
- W2893640826 hasConceptScore W2893640826C81440476 @default.