Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893642158> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2893642158 endingPage "1319" @default.
- W2893642158 startingPage "1311" @default.
- W2893642158 abstract "Sentiment analysis on large data has become challenging due to the diversity, and nature of data. Advancements in the internet, along with large data availability have obviated the traditional limitations to distributed computing. The objective of this work is to carry out sentiment analysis on Apache Spark distributed Framework to speed up computations and enhance machine performance in diverse environments. The analysis, such as polarity identification, subjective analysis and email spam etc., are carried on various text datasets. After pre-processing, Term Frequency-Inverse Document Frequency (TF-IDF) and unsupervised Spark-Latent Dirichlet Allocation (LDA) clustering algorithms are used for feature extraction and selection to improve the accuracy. Deep Neural Networks (DNN), Support Vector Machines (SVM), Tree ensemble classifiers are used to evaluate the performance of the framework on single node and cluster environments. Finally, the proposed work aims at building an approach for enhancing machine performance, more in terms of runtime over accuracy." @default.
- W2893642158 created "2018-10-05" @default.
- W2893642158 creator A5014976834 @default.
- W2893642158 creator A5046843082 @default.
- W2893642158 date "2022-01-01" @default.
- W2893642158 modified "2023-10-14" @default.
- W2893642158 title "Performance evaluation of DNN with other machine learning techniques in a cluster using Apache Spark and MLlib" @default.
- W2893642158 cites W2148423395 @default.
- W2893642158 cites W2243502667 @default.
- W2893642158 cites W2285924575 @default.
- W2893642158 cites W2397292972 @default.
- W2893642158 cites W2519041509 @default.
- W2893642158 cites W2584392848 @default.
- W2893642158 cites W2607400399 @default.
- W2893642158 cites W2734417323 @default.
- W2893642158 doi "https://doi.org/10.1016/j.jksuci.2018.09.022" @default.
- W2893642158 hasPublicationYear "2022" @default.
- W2893642158 type Work @default.
- W2893642158 sameAs 2893642158 @default.
- W2893642158 citedByCount "10" @default.
- W2893642158 countsByYear W28936421582020 @default.
- W2893642158 countsByYear W28936421582021 @default.
- W2893642158 countsByYear W28936421582022 @default.
- W2893642158 countsByYear W28936421582023 @default.
- W2893642158 crossrefType "journal-article" @default.
- W2893642158 hasAuthorship W2893642158A5014976834 @default.
- W2893642158 hasAuthorship W2893642158A5046843082 @default.
- W2893642158 hasBestOaLocation W28936421581 @default.
- W2893642158 hasConcept C113174947 @default.
- W2893642158 hasConcept C119857082 @default.
- W2893642158 hasConcept C120314980 @default.
- W2893642158 hasConcept C121332964 @default.
- W2893642158 hasConcept C12267149 @default.
- W2893642158 hasConcept C124101348 @default.
- W2893642158 hasConcept C134306372 @default.
- W2893642158 hasConcept C154945302 @default.
- W2893642158 hasConcept C171686336 @default.
- W2893642158 hasConcept C199360897 @default.
- W2893642158 hasConcept C2781215313 @default.
- W2893642158 hasConcept C29140674 @default.
- W2893642158 hasConcept C33923547 @default.
- W2893642158 hasConcept C41008148 @default.
- W2893642158 hasConcept C500882744 @default.
- W2893642158 hasConcept C50644808 @default.
- W2893642158 hasConcept C61797465 @default.
- W2893642158 hasConcept C62520636 @default.
- W2893642158 hasConcept C66402592 @default.
- W2893642158 hasConcept C73555534 @default.
- W2893642158 hasConcept C75684735 @default.
- W2893642158 hasConcept C81758059 @default.
- W2893642158 hasConceptScore W2893642158C113174947 @default.
- W2893642158 hasConceptScore W2893642158C119857082 @default.
- W2893642158 hasConceptScore W2893642158C120314980 @default.
- W2893642158 hasConceptScore W2893642158C121332964 @default.
- W2893642158 hasConceptScore W2893642158C12267149 @default.
- W2893642158 hasConceptScore W2893642158C124101348 @default.
- W2893642158 hasConceptScore W2893642158C134306372 @default.
- W2893642158 hasConceptScore W2893642158C154945302 @default.
- W2893642158 hasConceptScore W2893642158C171686336 @default.
- W2893642158 hasConceptScore W2893642158C199360897 @default.
- W2893642158 hasConceptScore W2893642158C2781215313 @default.
- W2893642158 hasConceptScore W2893642158C29140674 @default.
- W2893642158 hasConceptScore W2893642158C33923547 @default.
- W2893642158 hasConceptScore W2893642158C41008148 @default.
- W2893642158 hasConceptScore W2893642158C500882744 @default.
- W2893642158 hasConceptScore W2893642158C50644808 @default.
- W2893642158 hasConceptScore W2893642158C61797465 @default.
- W2893642158 hasConceptScore W2893642158C62520636 @default.
- W2893642158 hasConceptScore W2893642158C66402592 @default.
- W2893642158 hasConceptScore W2893642158C73555534 @default.
- W2893642158 hasConceptScore W2893642158C75684735 @default.
- W2893642158 hasConceptScore W2893642158C81758059 @default.
- W2893642158 hasIssue "1" @default.
- W2893642158 hasLocation W28936421581 @default.
- W2893642158 hasLocation W28936421582 @default.
- W2893642158 hasOpenAccess W2893642158 @default.
- W2893642158 hasPrimaryLocation W28936421581 @default.
- W2893642158 hasRelatedWork W1996541855 @default.
- W2893642158 hasRelatedWork W2790778417 @default.
- W2893642158 hasRelatedWork W3005133889 @default.
- W2893642158 hasRelatedWork W3008487931 @default.
- W2893642158 hasRelatedWork W3014300295 @default.
- W2893642158 hasRelatedWork W3035068237 @default.
- W2893642158 hasRelatedWork W3192794374 @default.
- W2893642158 hasRelatedWork W3195168932 @default.
- W2893642158 hasRelatedWork W3205795685 @default.
- W2893642158 hasRelatedWork W4362613237 @default.
- W2893642158 hasVolume "34" @default.
- W2893642158 isParatext "false" @default.
- W2893642158 isRetracted "false" @default.
- W2893642158 magId "2893642158" @default.
- W2893642158 workType "article" @default.