Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893653684> ?p ?o ?g. }
- W2893653684 endingPage "1" @default.
- W2893653684 startingPage "1" @default.
- W2893653684 abstract "Gender classification, a two-class problem (male or female), has been the subject of extensive research recently and gained a lot of attention due to its varied set of applications. The proposed work relies on individual facial features to train a convolutional neural network (CNN) for gender classification. In contrast with previously reported results that assume the facial features are independent, we consider the facial features as correlated features by training a single CNN that jointly learns from all facial features. In terms of accuracy, our results either outperform, or are on par with, other gender classification techniques applied to three different datasets namely specs on faces, groups, and face recognition technology. In terms of performance, the proposed CNN has significantly fewer parameters as compared with other techniques reported in the literature. Our learnable parameters are fewer than those required in techniques reported in recent work, which enables them to make the network less sensitive to over-fitting and easier to train than techniques that use different CNNs for each facial feature as reported in the literature." @default.
- W2893653684 created "2018-10-05" @default.
- W2893653684 creator A5032449155 @default.
- W2893653684 creator A5056912106 @default.
- W2893653684 creator A5072421315 @default.
- W2893653684 creator A5080469744 @default.
- W2893653684 creator A5082071553 @default.
- W2893653684 date "2018-09-27" @default.
- W2893653684 modified "2023-10-16" @default.
- W2893653684 title "Gender classification based on isolated facial features and foggy faces using jointly trained deep convolutional neural network" @default.
- W2893653684 cites W177797125 @default.
- W2893653684 cites W1905153633 @default.
- W2893653684 cites W1965804146 @default.
- W2893653684 cites W1968795164 @default.
- W2893653684 cites W1971957654 @default.
- W2893653684 cites W1983094544 @default.
- W2893653684 cites W1997011019 @default.
- W2893653684 cites W2003764141 @default.
- W2893653684 cites W2006431213 @default.
- W2893653684 cites W2034821857 @default.
- W2893653684 cites W2036565334 @default.
- W2893653684 cites W2084046189 @default.
- W2893653684 cites W2097616065 @default.
- W2893653684 cites W2115394472 @default.
- W2893653684 cites W2124750300 @default.
- W2893653684 cites W2133264389 @default.
- W2893653684 cites W2135964285 @default.
- W2893653684 cites W2149494055 @default.
- W2893653684 cites W2151029628 @default.
- W2893653684 cites W2168453695 @default.
- W2893653684 cites W2245074493 @default.
- W2893653684 cites W2320355672 @default.
- W2893653684 cites W2466980569 @default.
- W2893653684 cites W2479744163 @default.
- W2893653684 cites W2548234149 @default.
- W2893653684 cites W2548340823 @default.
- W2893653684 cites W2548780814 @default.
- W2893653684 cites W2591940486 @default.
- W2893653684 cites W2599197737 @default.
- W2893653684 cites W2602175800 @default.
- W2893653684 cites W2617904355 @default.
- W2893653684 cites W2735091921 @default.
- W2893653684 cites W2751647243 @default.
- W2893653684 cites W2763913564 @default.
- W2893653684 cites W2783765792 @default.
- W2893653684 cites W2790253618 @default.
- W2893653684 cites W2790757012 @default.
- W2893653684 cites W2791484929 @default.
- W2893653684 cites W2794386855 @default.
- W2893653684 cites W2963037915 @default.
- W2893653684 cites W2963377935 @default.
- W2893653684 cites W4232236350 @default.
- W2893653684 doi "https://doi.org/10.1117/1.jei.27.5.053023" @default.
- W2893653684 hasPublicationYear "2018" @default.
- W2893653684 type Work @default.
- W2893653684 sameAs 2893653684 @default.
- W2893653684 citedByCount "9" @default.
- W2893653684 countsByYear W28936536842019 @default.
- W2893653684 countsByYear W28936536842020 @default.
- W2893653684 countsByYear W28936536842021 @default.
- W2893653684 countsByYear W28936536842022 @default.
- W2893653684 countsByYear W28936536842023 @default.
- W2893653684 crossrefType "journal-article" @default.
- W2893653684 hasAuthorship W2893653684A5032449155 @default.
- W2893653684 hasAuthorship W2893653684A5056912106 @default.
- W2893653684 hasAuthorship W2893653684A5072421315 @default.
- W2893653684 hasAuthorship W2893653684A5080469744 @default.
- W2893653684 hasAuthorship W2893653684A5082071553 @default.
- W2893653684 hasConcept C108583219 @default.
- W2893653684 hasConcept C153180895 @default.
- W2893653684 hasConcept C154945302 @default.
- W2893653684 hasConcept C28490314 @default.
- W2893653684 hasConcept C31510193 @default.
- W2893653684 hasConcept C31972630 @default.
- W2893653684 hasConcept C41008148 @default.
- W2893653684 hasConcept C50644808 @default.
- W2893653684 hasConcept C52622490 @default.
- W2893653684 hasConcept C81363708 @default.
- W2893653684 hasConceptScore W2893653684C108583219 @default.
- W2893653684 hasConceptScore W2893653684C153180895 @default.
- W2893653684 hasConceptScore W2893653684C154945302 @default.
- W2893653684 hasConceptScore W2893653684C28490314 @default.
- W2893653684 hasConceptScore W2893653684C31510193 @default.
- W2893653684 hasConceptScore W2893653684C31972630 @default.
- W2893653684 hasConceptScore W2893653684C41008148 @default.
- W2893653684 hasConceptScore W2893653684C50644808 @default.
- W2893653684 hasConceptScore W2893653684C52622490 @default.
- W2893653684 hasConceptScore W2893653684C81363708 @default.
- W2893653684 hasIssue "05" @default.
- W2893653684 hasLocation W28936536841 @default.
- W2893653684 hasOpenAccess W2893653684 @default.
- W2893653684 hasPrimaryLocation W28936536841 @default.
- W2893653684 hasRelatedWork W2134472250 @default.
- W2893653684 hasRelatedWork W2279398222 @default.
- W2893653684 hasRelatedWork W2732542196 @default.
- W2893653684 hasRelatedWork W2773120646 @default.
- W2893653684 hasRelatedWork W2913302899 @default.
- W2893653684 hasRelatedWork W2977314777 @default.