Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893662415> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2893662415 endingPage "92" @default.
- W2893662415 startingPage "92" @default.
- W2893662415 abstract "Introduction: One of the main causes of medical errors is drug interaction which occurs when a drug decreases or increases the effect of another drug. Drug interactions occur as a result of changes in pharmacodynamics, pharmacokinetics, or a combination of both. Due to the problems caused by these errors and lack of an efficient system of automatic diagnosis of drug interactions, and also since a large amount of these interactions can be prevented, we aimed to search for drug interactions in the medical texts and also classify and identify the best algorithm. Methods: A two‑stage classification was used to solve the problem of unbalanced data dispersion in drug interaction classes. A subset of the most suitable features was identified for classification. In the first step of designing a binary classification, pairs of drugs which interact with each other and those which do not be separated. Then, we classified the pairs of drug interactions in one of the following four classes: effect, advice, mechanism, and int. In this study, different algorithms were used in both types of classifications, based on the type of data and expert opinion. To validate the first‑stage model, we considered 90% of the data as training data and the rest were considered as the test data. To validate the second‑stage model, we used the difference verification method. Weka data analysis software was also used for designing the model; then, the classification was made. Results: The results showed that the most appropriate features were mutual information (obtaining a score of 1000) and parts of speech. The efficiency of J48 algorithm in the stage of separating the drugs with and without interaction (F‑measure = 0.914) and also in the multiclass stage of the bagging algorithm (F‑measure = 0.915) was the highest among other algorithms. ZeroR algorithm required the shortest time to build the model (less than half a second) in both stages. Conclusion: According to the results of J48 algorithms and random forest, it can be concluded that decision tree is the most appropriate approach in the extraction and automatic classification of drug interactions, using the features derived from the text to be applied in clinical decision support system." @default.
- W2893662415 created "2018-10-05" @default.
- W2893662415 creator A5006097400 @default.
- W2893662415 creator A5028365121 @default.
- W2893662415 creator A5040553012 @default.
- W2893662415 creator A5041909602 @default.
- W2893662415 creator A5086004640 @default.
- W2893662415 date "2018-01-01" @default.
- W2893662415 modified "2023-10-02" @default.
- W2893662415 title "An evaluation of classification algorithms for prediction of drug interactions: Identification of the best algorithm" @default.
- W2893662415 cites W2791662360 @default.
- W2893662415 doi "https://doi.org/10.4103/jphi.jphi_19_18" @default.
- W2893662415 hasPublicationYear "2018" @default.
- W2893662415 type Work @default.
- W2893662415 sameAs 2893662415 @default.
- W2893662415 citedByCount "2" @default.
- W2893662415 countsByYear W28936624152021 @default.
- W2893662415 countsByYear W28936624152023 @default.
- W2893662415 crossrefType "journal-article" @default.
- W2893662415 hasAuthorship W2893662415A5006097400 @default.
- W2893662415 hasAuthorship W2893662415A5028365121 @default.
- W2893662415 hasAuthorship W2893662415A5040553012 @default.
- W2893662415 hasAuthorship W2893662415A5041909602 @default.
- W2893662415 hasAuthorship W2893662415A5086004640 @default.
- W2893662415 hasConcept C110083411 @default.
- W2893662415 hasConcept C11413529 @default.
- W2893662415 hasConcept C116834253 @default.
- W2893662415 hasConcept C118552586 @default.
- W2893662415 hasConcept C119857082 @default.
- W2893662415 hasConcept C12267149 @default.
- W2893662415 hasConcept C124101348 @default.
- W2893662415 hasConcept C154945302 @default.
- W2893662415 hasConcept C2780035454 @default.
- W2893662415 hasConcept C41008148 @default.
- W2893662415 hasConcept C59822182 @default.
- W2893662415 hasConcept C66905080 @default.
- W2893662415 hasConcept C71924100 @default.
- W2893662415 hasConcept C86803240 @default.
- W2893662415 hasConceptScore W2893662415C110083411 @default.
- W2893662415 hasConceptScore W2893662415C11413529 @default.
- W2893662415 hasConceptScore W2893662415C116834253 @default.
- W2893662415 hasConceptScore W2893662415C118552586 @default.
- W2893662415 hasConceptScore W2893662415C119857082 @default.
- W2893662415 hasConceptScore W2893662415C12267149 @default.
- W2893662415 hasConceptScore W2893662415C124101348 @default.
- W2893662415 hasConceptScore W2893662415C154945302 @default.
- W2893662415 hasConceptScore W2893662415C2780035454 @default.
- W2893662415 hasConceptScore W2893662415C41008148 @default.
- W2893662415 hasConceptScore W2893662415C59822182 @default.
- W2893662415 hasConceptScore W2893662415C66905080 @default.
- W2893662415 hasConceptScore W2893662415C71924100 @default.
- W2893662415 hasConceptScore W2893662415C86803240 @default.
- W2893662415 hasIssue "2" @default.
- W2893662415 hasLocation W28936624151 @default.
- W2893662415 hasOpenAccess W2893662415 @default.
- W2893662415 hasPrimaryLocation W28936624151 @default.
- W2893662415 hasRelatedWork W2782789473 @default.
- W2893662415 hasRelatedWork W2985682355 @default.
- W2893662415 hasRelatedWork W3133593829 @default.
- W2893662415 hasRelatedWork W3215867059 @default.
- W2893662415 hasRelatedWork W4226466708 @default.
- W2893662415 hasRelatedWork W4306321456 @default.
- W2893662415 hasRelatedWork W4310145772 @default.
- W2893662415 hasRelatedWork W4322008322 @default.
- W2893662415 hasRelatedWork W4328134586 @default.
- W2893662415 hasRelatedWork W4385059353 @default.
- W2893662415 hasVolume "8" @default.
- W2893662415 isParatext "false" @default.
- W2893662415 isRetracted "false" @default.
- W2893662415 magId "2893662415" @default.
- W2893662415 workType "article" @default.