Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893673367> ?p ?o ?g. }
- W2893673367 endingPage "75" @default.
- W2893673367 startingPage "1" @default.
- W2893673367 abstract "We first prove semi-orthogonal decompositions of derived factorization categories arising from sums of potentials of gauged Landau–Ginzburg models, where the sums are not necessarily Thom–Sebastiani type. We then apply the result to the category HMF L f ( f ) $operatorname{HMF}^{L_f}(f)$ of maximally graded matrix factorizations of an invertible polynomial f $f$ of chain type, and explicitly construct a full strong exceptional collection E 1 , ⋯ , E μ $E_1,hdots ,E_{mu }$ in HMF L f ( f ) $operatorname{HMF}^{L_f}(f)$ whose length μ $mu$ is the Milnor number of the Berglund–Hübsch transpose f ∼ $widetilde{f}$ of f $f$ . This proves a conjecture, which postulates that for an invertible polynomial f $f$ the category HMF L f ( f ) $operatorname{HMF}^{L_f}(f)$ admits a tilting object, in the case when f $f$ is a chain polynomial. Moreover, by careful analysis of morphisms between the exceptional objects E i $E_i$ , we explicitly determine the quiver with relations ( Q , I ) $(Q,I)$ which represents the endomorphism ring of the associated tilting object ⊕ i = 1 μ E i $oplus _{i=1}^{mu }E_i$ in HMF L f ( f ) $operatorname{HMF}^{L_f}(f)$ , and in particular we obtain an equivalence HMF L f ( f ) ≅ D b ( mod k Q / I ) $operatorname{HMF}^{L_f}(f)cong operatorname{D}^{operatorname{b}}(operatorname{mod}kQ/I)$ ." @default.
- W2893673367 created "2018-10-05" @default.
- W2893673367 creator A5008203017 @default.
- W2893673367 creator A5042762587 @default.
- W2893673367 date "2022-09-22" @default.
- W2893673367 modified "2023-10-10" @default.
- W2893673367 title "Derived factorization categories of non‐Thom–Sebastiani‐type sums of potentials" @default.
- W2893673367 cites W1922438222 @default.
- W2893673367 cites W1945612516 @default.
- W2893673367 cites W1976086282 @default.
- W2893673367 cites W1999716734 @default.
- W2893673367 cites W2017752524 @default.
- W2893673367 cites W2019295312 @default.
- W2893673367 cites W2023268586 @default.
- W2893673367 cites W2027607662 @default.
- W2893673367 cites W2030313883 @default.
- W2893673367 cites W2038087689 @default.
- W2893673367 cites W2040548871 @default.
- W2893673367 cites W2048144250 @default.
- W2893673367 cites W2048186646 @default.
- W2893673367 cites W2061015366 @default.
- W2893673367 cites W2067602374 @default.
- W2893673367 cites W2077388868 @default.
- W2893673367 cites W2108592261 @default.
- W2893673367 cites W2120453563 @default.
- W2893673367 cites W2154450439 @default.
- W2893673367 cites W2167791892 @default.
- W2893673367 cites W2241115659 @default.
- W2893673367 cites W2888615306 @default.
- W2893673367 cites W2953047762 @default.
- W2893673367 cites W2962788309 @default.
- W2893673367 cites W2962894525 @default.
- W2893673367 cites W2962981679 @default.
- W2893673367 cites W2963032141 @default.
- W2893673367 cites W2963219490 @default.
- W2893673367 cites W2963312939 @default.
- W2893673367 cites W2963660849 @default.
- W2893673367 cites W2963730847 @default.
- W2893673367 cites W2963761184 @default.
- W2893673367 cites W2963775237 @default.
- W2893673367 cites W2964087504 @default.
- W2893673367 cites W2973094214 @default.
- W2893673367 cites W3008601178 @default.
- W2893673367 cites W3024796176 @default.
- W2893673367 cites W3046683564 @default.
- W2893673367 cites W3091111186 @default.
- W2893673367 cites W3098032788 @default.
- W2893673367 cites W3102976169 @default.
- W2893673367 cites W3103966124 @default.
- W2893673367 cites W3104534628 @default.
- W2893673367 cites W3104617756 @default.
- W2893673367 cites W3104727661 @default.
- W2893673367 cites W3104731221 @default.
- W2893673367 cites W3105290825 @default.
- W2893673367 cites W3105411158 @default.
- W2893673367 cites W3128219520 @default.
- W2893673367 cites W4232252593 @default.
- W2893673367 doi "https://doi.org/10.1112/plms.12488" @default.
- W2893673367 hasPublicationYear "2022" @default.
- W2893673367 type Work @default.
- W2893673367 sameAs 2893673367 @default.
- W2893673367 citedByCount "7" @default.
- W2893673367 countsByYear W28936733672019 @default.
- W2893673367 countsByYear W28936733672020 @default.
- W2893673367 countsByYear W28936733672021 @default.
- W2893673367 countsByYear W28936733672022 @default.
- W2893673367 countsByYear W28936733672023 @default.
- W2893673367 crossrefType "journal-article" @default.
- W2893673367 hasAuthorship W2893673367A5008203017 @default.
- W2893673367 hasAuthorship W2893673367A5042762587 @default.
- W2893673367 hasBestOaLocation W28936733672 @default.
- W2893673367 hasConcept C11413529 @default.
- W2893673367 hasConcept C114614502 @default.
- W2893673367 hasConcept C116858840 @default.
- W2893673367 hasConcept C134306372 @default.
- W2893673367 hasConcept C168310172 @default.
- W2893673367 hasConcept C187834632 @default.
- W2893673367 hasConcept C18903297 @default.
- W2893673367 hasConcept C202444582 @default.
- W2893673367 hasConcept C2777299769 @default.
- W2893673367 hasConcept C2780990831 @default.
- W2893673367 hasConcept C33923547 @default.
- W2893673367 hasConcept C86803240 @default.
- W2893673367 hasConcept C90119067 @default.
- W2893673367 hasConcept C96442724 @default.
- W2893673367 hasConceptScore W2893673367C11413529 @default.
- W2893673367 hasConceptScore W2893673367C114614502 @default.
- W2893673367 hasConceptScore W2893673367C116858840 @default.
- W2893673367 hasConceptScore W2893673367C134306372 @default.
- W2893673367 hasConceptScore W2893673367C168310172 @default.
- W2893673367 hasConceptScore W2893673367C187834632 @default.
- W2893673367 hasConceptScore W2893673367C18903297 @default.
- W2893673367 hasConceptScore W2893673367C202444582 @default.
- W2893673367 hasConceptScore W2893673367C2777299769 @default.
- W2893673367 hasConceptScore W2893673367C2780990831 @default.
- W2893673367 hasConceptScore W2893673367C33923547 @default.
- W2893673367 hasConceptScore W2893673367C86803240 @default.
- W2893673367 hasConceptScore W2893673367C90119067 @default.