Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893674448> ?p ?o ?g. }
- W2893674448 abstract "We propose a general framework for solving statistical mechanics of systems with finite size. The approach extends the celebrated variational mean-field approaches using autoregressive neural networks, which support direct sampling and exact calculation of normalized probability of configurations. It computes variational free energy, estimates physical quantities such as entropy, magnetizations and correlations, and generates uncorrelated samples all at once. Training of the network employs the policy gradient approach in reinforcement learning, which unbiasedly estimates the gradient of variational parameters. We apply our approach to several classic systems, including 2D Ising models, the Hopfield model, the Sherrington-Kirkpatrick model, and the inverse Ising model, for demonstrating its advantages over existing variational mean-field methods. Our approach sheds light on solving statistical physics problems using modern deep generative neural networks.Received 8 November 2018DOI:https://doi.org/10.1103/PhysRevLett.122.080602© 2019 American Physical SocietyPhysics Subject Headings (PhySH)Physical SystemsArtificial neural networksSpin glassesTechniquesIsing modelVariational approachStatistical Physics" @default.
- W2893674448 created "2018-10-05" @default.
- W2893674448 creator A5055329626 @default.
- W2893674448 creator A5073216396 @default.
- W2893674448 creator A5088080688 @default.
- W2893674448 date "2019-02-28" @default.
- W2893674448 modified "2023-10-17" @default.
- W2893674448 title "Solving Statistical Mechanics Using Variational Autoregressive Networks" @default.
- W2893674448 cites W1516111018 @default.
- W2893674448 cites W1531177993 @default.
- W2893674448 cites W1974572752 @default.
- W2893674448 cites W1988758873 @default.
- W2893674448 cites W1990325184 @default.
- W2893674448 cites W1990755770 @default.
- W2893674448 cites W2007995670 @default.
- W2893674448 cites W2022820481 @default.
- W2893674448 cites W2031392878 @default.
- W2893674448 cites W2064378343 @default.
- W2893674448 cites W2069129925 @default.
- W2893674448 cites W2074670256 @default.
- W2893674448 cites W2080792322 @default.
- W2893674448 cites W2101218312 @default.
- W2893674448 cites W2109091716 @default.
- W2893674448 cites W2119717200 @default.
- W2893674448 cites W2128084896 @default.
- W2893674448 cites W2151781750 @default.
- W2893674448 cites W2326135011 @default.
- W2893674448 cites W2419175238 @default.
- W2893674448 cites W2558748708 @default.
- W2893674448 cites W2785331752 @default.
- W2893674448 cites W2963426933 @default.
- W2893674448 cites W3100492388 @default.
- W2893674448 cites W3102678975 @default.
- W2893674448 cites W3103325978 @default.
- W2893674448 cites W4256035642 @default.
- W2893674448 cites W4301259139 @default.
- W2893674448 doi "https://doi.org/10.1103/physrevlett.122.080602" @default.
- W2893674448 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30932595" @default.
- W2893674448 hasPublicationYear "2019" @default.
- W2893674448 type Work @default.
- W2893674448 sameAs 2893674448 @default.
- W2893674448 citedByCount "110" @default.
- W2893674448 countsByYear W28936744482019 @default.
- W2893674448 countsByYear W28936744482020 @default.
- W2893674448 countsByYear W28936744482021 @default.
- W2893674448 countsByYear W28936744482022 @default.
- W2893674448 countsByYear W28936744482023 @default.
- W2893674448 crossrefType "journal-article" @default.
- W2893674448 hasAuthorship W2893674448A5055329626 @default.
- W2893674448 hasAuthorship W2893674448A5073216396 @default.
- W2893674448 hasAuthorship W2893674448A5088080688 @default.
- W2893674448 hasBestOaLocation W28936744482 @default.
- W2893674448 hasConcept C105795698 @default.
- W2893674448 hasConcept C106301342 @default.
- W2893674448 hasConcept C121332964 @default.
- W2893674448 hasConcept C121864883 @default.
- W2893674448 hasConcept C134306372 @default.
- W2893674448 hasConcept C135252773 @default.
- W2893674448 hasConcept C135628077 @default.
- W2893674448 hasConcept C154945302 @default.
- W2893674448 hasConcept C159877910 @default.
- W2893674448 hasConcept C28826006 @default.
- W2893674448 hasConcept C33923547 @default.
- W2893674448 hasConcept C41008148 @default.
- W2893674448 hasConcept C50644808 @default.
- W2893674448 hasConcept C51329190 @default.
- W2893674448 hasConcept C62520636 @default.
- W2893674448 hasConcept C72514878 @default.
- W2893674448 hasConcept C74650414 @default.
- W2893674448 hasConcept C9259290 @default.
- W2893674448 hasConcept C9679016 @default.
- W2893674448 hasConcept C97355855 @default.
- W2893674448 hasConcept C99874945 @default.
- W2893674448 hasConceptScore W2893674448C105795698 @default.
- W2893674448 hasConceptScore W2893674448C106301342 @default.
- W2893674448 hasConceptScore W2893674448C121332964 @default.
- W2893674448 hasConceptScore W2893674448C121864883 @default.
- W2893674448 hasConceptScore W2893674448C134306372 @default.
- W2893674448 hasConceptScore W2893674448C135252773 @default.
- W2893674448 hasConceptScore W2893674448C135628077 @default.
- W2893674448 hasConceptScore W2893674448C154945302 @default.
- W2893674448 hasConceptScore W2893674448C159877910 @default.
- W2893674448 hasConceptScore W2893674448C28826006 @default.
- W2893674448 hasConceptScore W2893674448C33923547 @default.
- W2893674448 hasConceptScore W2893674448C41008148 @default.
- W2893674448 hasConceptScore W2893674448C50644808 @default.
- W2893674448 hasConceptScore W2893674448C51329190 @default.
- W2893674448 hasConceptScore W2893674448C62520636 @default.
- W2893674448 hasConceptScore W2893674448C72514878 @default.
- W2893674448 hasConceptScore W2893674448C74650414 @default.
- W2893674448 hasConceptScore W2893674448C9259290 @default.
- W2893674448 hasConceptScore W2893674448C9679016 @default.
- W2893674448 hasConceptScore W2893674448C97355855 @default.
- W2893674448 hasConceptScore W2893674448C99874945 @default.
- W2893674448 hasFunder F4320321001 @default.
- W2893674448 hasFunder F4320321133 @default.
- W2893674448 hasFunder F4320321540 @default.
- W2893674448 hasIssue "8" @default.
- W2893674448 hasLocation W28936744481 @default.
- W2893674448 hasLocation W28936744482 @default.