Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893678570> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2893678570 endingPage "128" @default.
- W2893678570 startingPage "103" @default.
- W2893678570 abstract "Recent advances in scanning probe microscopy and scanning transmission electron microscopy have opened unprecedented opportunities in probing the materials structural parameters and electronic properties in real space on a picometre-scale. At the same time, the ability of modern day microscopes to quickly produce large, high-resolution datasets has created a challenge for rapid physics-guided analysis of data that typically contain several hundreds to several thousand atomic or molecular units per image. Here it is demonstrated how the advanced statistical analysis and machine learning techniques can be used for extracting relevant physical and chemical information from microscope data on multiple functional materials. Specifically, the following three case studies are discussed (i) application of a combination of convolutional neural network and Markov model for analyzing positional and orientational order in molecular self-assembly; (ii) a combination of sliding window fast Fourier transform, Pearson correlation matrix and canonical correlation analysis methods to study the relationships between lattice distortions and electron scattering patterns in graphene; (iii) application of a non-negative matrix factorization with physics-based constraints and Moran’s analysis of spatial associations to extracting electronic responses linked to different types of structural domains from multi-modal imaging datasets on iron-based superconductors. The approaches demonstrated here are universal in nature and can be applied to a variety of microscopic measurements on different materials." @default.
- W2893678570 created "2018-10-05" @default.
- W2893678570 creator A5013879711 @default.
- W2893678570 creator A5048552375 @default.
- W2893678570 creator A5081316061 @default.
- W2893678570 date "2018-01-01" @default.
- W2893678570 modified "2023-09-26" @default.
- W2893678570 title "Deep Data Analytics in Structural and Functional Imaging of Nanoscale Materials" @default.
- W2893678570 cites W1541839774 @default.
- W2893678570 cites W1812560530 @default.
- W2893678570 cites W1902027874 @default.
- W2893678570 cites W1966520136 @default.
- W2893678570 cites W1972447761 @default.
- W2893678570 cites W1982311541 @default.
- W2893678570 cites W1992785270 @default.
- W2893678570 cites W2006529508 @default.
- W2893678570 cites W2007991097 @default.
- W2893678570 cites W2013812022 @default.
- W2893678570 cites W2025977133 @default.
- W2893678570 cites W2026237155 @default.
- W2893678570 cites W2030695520 @default.
- W2893678570 cites W2031299733 @default.
- W2893678570 cites W2039670985 @default.
- W2893678570 cites W2046517024 @default.
- W2893678570 cites W2052313806 @default.
- W2893678570 cites W2054860087 @default.
- W2893678570 cites W2063846900 @default.
- W2893678570 cites W2065301447 @default.
- W2893678570 cites W2067483002 @default.
- W2893678570 cites W2082663471 @default.
- W2893678570 cites W2094978554 @default.
- W2893678570 cites W2105179160 @default.
- W2893678570 cites W2108622858 @default.
- W2893678570 cites W2111244682 @default.
- W2893678570 cites W2114817966 @default.
- W2893678570 cites W2118898434 @default.
- W2893678570 cites W2150486237 @default.
- W2893678570 cites W2157900895 @default.
- W2893678570 cites W2158146385 @default.
- W2893678570 cites W2162442875 @default.
- W2893678570 cites W2164194853 @default.
- W2893678570 cites W2170068899 @default.
- W2893678570 cites W2205615771 @default.
- W2893678570 cites W2217912240 @default.
- W2893678570 cites W2280558096 @default.
- W2893678570 cites W2315837940 @default.
- W2893678570 cites W2321846536 @default.
- W2893678570 cites W2513141878 @default.
- W2893678570 cites W2740407088 @default.
- W2893678570 cites W3098493917 @default.
- W2893678570 cites W3103311540 @default.
- W2893678570 cites W3104257088 @default.
- W2893678570 cites W3105582484 @default.
- W2893678570 cites W760349089 @default.
- W2893678570 doi "https://doi.org/10.1007/978-3-319-99465-9_5" @default.
- W2893678570 hasPublicationYear "2018" @default.
- W2893678570 type Work @default.
- W2893678570 sameAs 2893678570 @default.
- W2893678570 citedByCount "3" @default.
- W2893678570 countsByYear W28936785702020 @default.
- W2893678570 countsByYear W28936785702021 @default.
- W2893678570 countsByYear W28936785702022 @default.
- W2893678570 crossrefType "book-chapter" @default.
- W2893678570 hasAuthorship W2893678570A5013879711 @default.
- W2893678570 hasAuthorship W2893678570A5048552375 @default.
- W2893678570 hasAuthorship W2893678570A5081316061 @default.
- W2893678570 hasConcept C153180895 @default.
- W2893678570 hasConcept C154945302 @default.
- W2893678570 hasConcept C171250308 @default.
- W2893678570 hasConcept C192562407 @default.
- W2893678570 hasConcept C41008148 @default.
- W2893678570 hasConcept C81363708 @default.
- W2893678570 hasConceptScore W2893678570C153180895 @default.
- W2893678570 hasConceptScore W2893678570C154945302 @default.
- W2893678570 hasConceptScore W2893678570C171250308 @default.
- W2893678570 hasConceptScore W2893678570C192562407 @default.
- W2893678570 hasConceptScore W2893678570C41008148 @default.
- W2893678570 hasConceptScore W2893678570C81363708 @default.
- W2893678570 hasLocation W28936785701 @default.
- W2893678570 hasOpenAccess W2893678570 @default.
- W2893678570 hasPrimaryLocation W28936785701 @default.
- W2893678570 hasRelatedWork W2735477435 @default.
- W2893678570 hasRelatedWork W2748454020 @default.
- W2893678570 hasRelatedWork W2767651786 @default.
- W2893678570 hasRelatedWork W2899084033 @default.
- W2893678570 hasRelatedWork W2912288872 @default.
- W2893678570 hasRelatedWork W3016958897 @default.
- W2893678570 hasRelatedWork W3181746755 @default.
- W2893678570 hasRelatedWork W4283379348 @default.
- W2893678570 hasRelatedWork W4312417841 @default.
- W2893678570 hasRelatedWork W564581980 @default.
- W2893678570 isParatext "false" @default.
- W2893678570 isRetracted "false" @default.
- W2893678570 magId "2893678570" @default.
- W2893678570 workType "book-chapter" @default.