Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893687881> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2893687881 abstract "Finding the equilibration time scale is an important open question in studying the equilibration of quantum systems. There are many kinds of systems that are unable to achieve equilibration, such as Anderson insulator, many-body localization systems and some integrable systems. For those systems that can reach equilibration, it was proved that there exists a general equilibration time scale. But these upper bounds are unrealistically long, and the lower bounds are also unrealistically short. How to get an accurate and general equilibration time scale is still unclear. In this paper, we study local equilibration time scales in quantum lattice systems. With the relation between equilibration and entanglement entropy, we define a new criterion for equilibration. This criterion is based on Renyi entropy, which is simpler for calculation. Moreover, the production of Renyi entropy is highly dependent on the spreading of information, and hence the tools developed in quantum information theory can help a lot. For the upper bound of equilibration time, we use the normal criterion of the time average ofthe fluctuation of the observation. This equilibration criterion is assessed with concrete observable operator, hence it is more accurate than the criterion of Renyi entropy. But this criterion is more complicated for calculation. With an appropriate assumption about the initial state, we present a new upper bound of equilibration time. Since the results are not constrained by the Hamiltonian of the system, this bound can be applied to various situations. If we are concerned with the local equilibration, we can limit the observation to a small region. If the whole system is big enough, the local observation would always find that the rest part is staying at the canonical ensemble, so that the local equilibration time will not increase with the size of whole system. When the local region is small enough, the upper bound of equilibration time can be much shorter. The local Renyi entropy has close relation to the propagation of information. The limitation of the speed of information propagation in a quantum lattice system can be given by the Lieb-Robinson bound, with which we evaluate the production rate of local 2-Renyi entropy. With these, we give a new lower bound of equilibration time for systems whose interactions are respectively short-range, exponentially-decaying and long-range. In earlier works, the lower bound of equilibration time is equal to the Lieb-Robinson time of the local system. In our rigorous proof, however, the lower bound is related to the strength of hopping, which also decides the Lieb-Robinson velocity. This means the equilibration time is related to the Lieb-Robinson time indeed. But the strictly equal relation may not hold. These new bounds are important to understanding the process of quantum equilibration." @default.
- W2893687881 created "2018-10-05" @default.
- W2893687881 creator A5009023050 @default.
- W2893687881 creator A5059315238 @default.
- W2893687881 date "2018-09-30" @default.
- W2893687881 modified "2023-09-26" @default.
- W2893687881 title "The equilibration time scales of the quantum lattice model" @default.
- W2893687881 doi "https://doi.org/10.1360/n972018-00361" @default.
- W2893687881 hasPublicationYear "2018" @default.
- W2893687881 type Work @default.
- W2893687881 sameAs 2893687881 @default.
- W2893687881 citedByCount "0" @default.
- W2893687881 crossrefType "journal-article" @default.
- W2893687881 hasAuthorship W2893687881A5009023050 @default.
- W2893687881 hasAuthorship W2893687881A5059315238 @default.
- W2893687881 hasBestOaLocation W28936878811 @default.
- W2893687881 hasConcept C106301342 @default.
- W2893687881 hasConcept C121040770 @default.
- W2893687881 hasConcept C121332964 @default.
- W2893687881 hasConcept C121864883 @default.
- W2893687881 hasConcept C126255220 @default.
- W2893687881 hasConcept C130787639 @default.
- W2893687881 hasConcept C134306372 @default.
- W2893687881 hasConcept C24890656 @default.
- W2893687881 hasConcept C2778926657 @default.
- W2893687881 hasConcept C2781204021 @default.
- W2893687881 hasConcept C32848918 @default.
- W2893687881 hasConcept C33923547 @default.
- W2893687881 hasConcept C62520636 @default.
- W2893687881 hasConcept C77553402 @default.
- W2893687881 hasConcept C84114770 @default.
- W2893687881 hasConceptScore W2893687881C106301342 @default.
- W2893687881 hasConceptScore W2893687881C121040770 @default.
- W2893687881 hasConceptScore W2893687881C121332964 @default.
- W2893687881 hasConceptScore W2893687881C121864883 @default.
- W2893687881 hasConceptScore W2893687881C126255220 @default.
- W2893687881 hasConceptScore W2893687881C130787639 @default.
- W2893687881 hasConceptScore W2893687881C134306372 @default.
- W2893687881 hasConceptScore W2893687881C24890656 @default.
- W2893687881 hasConceptScore W2893687881C2778926657 @default.
- W2893687881 hasConceptScore W2893687881C2781204021 @default.
- W2893687881 hasConceptScore W2893687881C32848918 @default.
- W2893687881 hasConceptScore W2893687881C33923547 @default.
- W2893687881 hasConceptScore W2893687881C62520636 @default.
- W2893687881 hasConceptScore W2893687881C77553402 @default.
- W2893687881 hasConceptScore W2893687881C84114770 @default.
- W2893687881 hasLocation W28936878811 @default.
- W2893687881 hasOpenAccess W2893687881 @default.
- W2893687881 hasPrimaryLocation W28936878811 @default.
- W2893687881 hasRelatedWork W2025722935 @default.
- W2893687881 hasRelatedWork W2074765343 @default.
- W2893687881 hasRelatedWork W2122829972 @default.
- W2893687881 hasRelatedWork W2893687881 @default.
- W2893687881 hasRelatedWork W2906708369 @default.
- W2893687881 hasRelatedWork W3098675272 @default.
- W2893687881 hasRelatedWork W3101278357 @default.
- W2893687881 hasRelatedWork W4210781456 @default.
- W2893687881 hasRelatedWork W4281563706 @default.
- W2893687881 hasRelatedWork W4288099613 @default.
- W2893687881 isParatext "false" @default.
- W2893687881 isRetracted "false" @default.
- W2893687881 magId "2893687881" @default.
- W2893687881 workType "article" @default.