Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893699314> ?p ?o ?g. }
- W2893699314 endingPage "794" @default.
- W2893699314 startingPage "783" @default.
- W2893699314 abstract "Large-scale in situ soil moisture monitoring networks are becoming increasingly valuable research tools, but existing networks feature almost exclusive deployment of stations in grassland vegetation. These grassland soil moisture observations are unlikely to adequately represent the real soil moisture patterns in landscapes with intermixed land cover types. Here we demonstrate the severity of the problem for one particular landscape and introduce a flexible new method for solving the problem. The specific objectives of this study were (i) to compare root-zone soil moisture dynamics of two dominant vegetation types across Oklahoma, grassland (observed) and winter wheat cropland (simulated); (ii) to relate the soil moisture dynamics of grassland and cropland vegetation using an artificial neural network (ANN) as an observation operator; and (iii) to use the resulting ANN to estimate the soil moisture spatial patterns for a landscape of intermixed grassland and wheat cropland. Root-zone soil moisture was represented by plant available water (PAW) in the top 0.8 m of the soil profile. PAW under grassland was calculated from 18 years of soil moisture observations at 83 stations of the Oklahoma Mesonet, whereas PAW under winter wheat was simulated for the same 83 locations using a calibrated and validated soil water balance model. Then, we trained an ANN to reproduce the simulated PAW under winter wheat using only six inputs: day of the year, latitude and longitude, measured PAW under grassland, and percent sand and clay. The resulting ANN was used, along with grassland soil moisture observations, to estimate the detailed soil moisture pattern for a 9 × 9 km2 Soil Moisture Active Passive (SMAP) grid cell. The seasonal dynamics of root-zone PAW for grassland and winter wheat were strongly asynchronous, so grassland soil moisture observations rarely reflect cropland soil moisture conditions in the region. The simple ANN approach facilitated efficient and accurate prediction of the simulated PAW under winter wheat, RMSD = 21 mm and normalized RMSD = 0.17, using observed PAW under grassland as an input. This new method for estimating soil moisture under adjacent, contrasting land covers at a relatively low computational cost could be employed for any region and land cover pairing with training data available, and it may significantly enhance the applications of existing large-scale soil moisture monitoring networks." @default.
- W2893699314 created "2018-10-05" @default.
- W2893699314 creator A5002483805 @default.
- W2893699314 creator A5015058695 @default.
- W2893699314 date "2018-11-01" @default.
- W2893699314 modified "2023-10-01" @default.
- W2893699314 title "Modeling transient soil moisture dichotomies in landscapes with intermixed land covers" @default.
- W2893699314 cites W1543335190 @default.
- W2893699314 cites W1963950134 @default.
- W2893699314 cites W1964364466 @default.
- W2893699314 cites W1965123344 @default.
- W2893699314 cites W1972127185 @default.
- W2893699314 cites W1975387419 @default.
- W2893699314 cites W1976820485 @default.
- W2893699314 cites W1983668139 @default.
- W2893699314 cites W1983747517 @default.
- W2893699314 cites W1988904786 @default.
- W2893699314 cites W1989699041 @default.
- W2893699314 cites W1994975670 @default.
- W2893699314 cites W2006453785 @default.
- W2893699314 cites W2007687717 @default.
- W2893699314 cites W2015066808 @default.
- W2893699314 cites W2026845815 @default.
- W2893699314 cites W2034255497 @default.
- W2893699314 cites W2036054973 @default.
- W2893699314 cites W2039348932 @default.
- W2893699314 cites W2045660058 @default.
- W2893699314 cites W2048336910 @default.
- W2893699314 cites W2048402716 @default.
- W2893699314 cites W2049333951 @default.
- W2893699314 cites W2060112377 @default.
- W2893699314 cites W2062571186 @default.
- W2893699314 cites W2067000248 @default.
- W2893699314 cites W2071681633 @default.
- W2893699314 cites W2072723934 @default.
- W2893699314 cites W2081879838 @default.
- W2893699314 cites W2094397782 @default.
- W2893699314 cites W2107492114 @default.
- W2893699314 cites W2108031818 @default.
- W2893699314 cites W2111286455 @default.
- W2893699314 cites W2118398570 @default.
- W2893699314 cites W2135048240 @default.
- W2893699314 cites W2141060690 @default.
- W2893699314 cites W2141219203 @default.
- W2893699314 cites W2146492175 @default.
- W2893699314 cites W2147241431 @default.
- W2893699314 cites W2147641734 @default.
- W2893699314 cites W2159456033 @default.
- W2893699314 cites W2175231548 @default.
- W2893699314 cites W221858247 @default.
- W2893699314 cites W2276661104 @default.
- W2893699314 cites W2280612850 @default.
- W2893699314 cites W2292421548 @default.
- W2893699314 cites W2313470070 @default.
- W2893699314 cites W2345643016 @default.
- W2893699314 cites W2553519799 @default.
- W2893699314 cites W2740614026 @default.
- W2893699314 cites W2791547578 @default.
- W2893699314 cites W2799627428 @default.
- W2893699314 doi "https://doi.org/10.1016/j.jhydrol.2018.09.049" @default.
- W2893699314 hasPublicationYear "2018" @default.
- W2893699314 type Work @default.
- W2893699314 sameAs 2893699314 @default.
- W2893699314 citedByCount "11" @default.
- W2893699314 countsByYear W28936993142019 @default.
- W2893699314 countsByYear W28936993142020 @default.
- W2893699314 countsByYear W28936993142021 @default.
- W2893699314 countsByYear W28936993142022 @default.
- W2893699314 crossrefType "journal-article" @default.
- W2893699314 hasAuthorship W2893699314A5002483805 @default.
- W2893699314 hasAuthorship W2893699314A5015058695 @default.
- W2893699314 hasBestOaLocation W28936993141 @default.
- W2893699314 hasConcept C127313418 @default.
- W2893699314 hasConcept C142724271 @default.
- W2893699314 hasConcept C153294291 @default.
- W2893699314 hasConcept C159390177 @default.
- W2893699314 hasConcept C159750122 @default.
- W2893699314 hasConcept C176864760 @default.
- W2893699314 hasConcept C187320778 @default.
- W2893699314 hasConcept C205649164 @default.
- W2893699314 hasConcept C24939127 @default.
- W2893699314 hasConcept C2775835988 @default.
- W2893699314 hasConcept C2776133958 @default.
- W2893699314 hasConcept C39432304 @default.
- W2893699314 hasConcept C6557445 @default.
- W2893699314 hasConcept C71924100 @default.
- W2893699314 hasConcept C76886044 @default.
- W2893699314 hasConcept C86803240 @default.
- W2893699314 hasConceptScore W2893699314C127313418 @default.
- W2893699314 hasConceptScore W2893699314C142724271 @default.
- W2893699314 hasConceptScore W2893699314C153294291 @default.
- W2893699314 hasConceptScore W2893699314C159390177 @default.
- W2893699314 hasConceptScore W2893699314C159750122 @default.
- W2893699314 hasConceptScore W2893699314C176864760 @default.
- W2893699314 hasConceptScore W2893699314C187320778 @default.
- W2893699314 hasConceptScore W2893699314C205649164 @default.
- W2893699314 hasConceptScore W2893699314C24939127 @default.
- W2893699314 hasConceptScore W2893699314C2775835988 @default.