Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893709526> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2893709526 abstract "In recent years, deep learning has shown promising results when used in the field of natural language processing (NLP). Neural networks (NNs) such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have been used for various NLP tasks including sentiment analysis, information retrieval, and document classification. In this paper, we the present the Supreme Court Classifier (SCC), a system that applies these methods to the problem of document classification of legal court opinions. We compare methods using traditional machine learning with recent NN-based methods. We also present a CNN used with pre-trained word vectors which shows improvements over the state-of-the-art applied to our dataset. We train and evaluate our system using the Washington University School of Law Supreme Court Database (SCDB). Our best system (word2vec + CNN) achieves 72.4% accuracy when classifying the court decisions into 15 broad SCDB categories and 31.9% accuracy when classifying among 279 finer-grained SCDB categories." @default.
- W2893709526 created "2018-10-05" @default.
- W2893709526 creator A5030397400 @default.
- W2893709526 creator A5043134485 @default.
- W2893709526 creator A5050439418 @default.
- W2893709526 date "2018-09-26" @default.
- W2893709526 modified "2023-10-16" @default.
- W2893709526 title "A Comparative Study of Classifying Legal Documents with Neural Networks" @default.
- W2893709526 cites W1832693441 @default.
- W2893709526 cites W1880262756 @default.
- W2893709526 cites W1924770834 @default.
- W2893709526 cites W2064675550 @default.
- W2893709526 cites W2095705004 @default.
- W2893709526 cites W2102448616 @default.
- W2893709526 cites W2110485445 @default.
- W2893709526 cites W2112796928 @default.
- W2893709526 cites W2113765418 @default.
- W2893709526 cites W2118020653 @default.
- W2893709526 cites W2153579005 @default.
- W2893709526 cites W2174706414 @default.
- W2893709526 cites W2250539671 @default.
- W2893709526 cites W2413904250 @default.
- W2893709526 cites W2493916176 @default.
- W2893709526 cites W2587019100 @default.
- W2893709526 cites W2772121968 @default.
- W2893709526 cites W2792764867 @default.
- W2893709526 cites W2903950532 @default.
- W2893709526 cites W2949547296 @default.
- W2893709526 cites W2963126915 @default.
- W2893709526 cites W2963211364 @default.
- W2893709526 cites W2963751061 @default.
- W2893709526 cites W2964121744 @default.
- W2893709526 cites W2964199361 @default.
- W2893709526 doi "https://doi.org/10.15439/2018f227" @default.
- W2893709526 hasPublicationYear "2018" @default.
- W2893709526 type Work @default.
- W2893709526 sameAs 2893709526 @default.
- W2893709526 citedByCount "27" @default.
- W2893709526 countsByYear W28937095262019 @default.
- W2893709526 countsByYear W28937095262020 @default.
- W2893709526 countsByYear W28937095262021 @default.
- W2893709526 countsByYear W28937095262022 @default.
- W2893709526 countsByYear W28937095262023 @default.
- W2893709526 crossrefType "proceedings-article" @default.
- W2893709526 hasAuthorship W2893709526A5030397400 @default.
- W2893709526 hasAuthorship W2893709526A5043134485 @default.
- W2893709526 hasAuthorship W2893709526A5050439418 @default.
- W2893709526 hasBestOaLocation W28937095261 @default.
- W2893709526 hasConcept C154945302 @default.
- W2893709526 hasConcept C204321447 @default.
- W2893709526 hasConcept C23123220 @default.
- W2893709526 hasConcept C41008148 @default.
- W2893709526 hasConcept C50644808 @default.
- W2893709526 hasConceptScore W2893709526C154945302 @default.
- W2893709526 hasConceptScore W2893709526C204321447 @default.
- W2893709526 hasConceptScore W2893709526C23123220 @default.
- W2893709526 hasConceptScore W2893709526C41008148 @default.
- W2893709526 hasConceptScore W2893709526C50644808 @default.
- W2893709526 hasLocation W28937095261 @default.
- W2893709526 hasOpenAccess W2893709526 @default.
- W2893709526 hasPrimaryLocation W28937095261 @default.
- W2893709526 hasRelatedWork W2119214692 @default.
- W2893709526 hasRelatedWork W2144190808 @default.
- W2893709526 hasRelatedWork W2357241418 @default.
- W2893709526 hasRelatedWork W2366644548 @default.
- W2893709526 hasRelatedWork W2368651715 @default.
- W2893709526 hasRelatedWork W2376314740 @default.
- W2893709526 hasRelatedWork W2384888906 @default.
- W2893709526 hasRelatedWork W2386387936 @default.
- W2893709526 hasRelatedWork W2611614995 @default.
- W2893709526 hasRelatedWork W3107474891 @default.
- W2893709526 isParatext "false" @default.
- W2893709526 isRetracted "false" @default.
- W2893709526 magId "2893709526" @default.
- W2893709526 workType "article" @default.