Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893712976> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2893712976 abstract "Physical unclonable functions (PUFs) are emerging as a promising class of hardware primitives for delivering security for IoT devices. Cryptographic key-based security mechanisms are heavyweight by demanding resources more than many resource-constraint IoT devices can provide, and are also vulnerable to side-channel invasive attacks. PUFs utilize integrated circuits' manufacturing variations to produce responses unique for individual devices, and hence cannot be reproduced. An important goal of security research is to discover all possible insecure risks, which can provide secure application developers useful information so that they can avoid the risk-containing components or mechanisms. While physically unclonable, some PUFs have been found to be mathematically clonable by machine learning methods. Large XOR arbiter PUFs is one group of PUFs that were shown to withstand existing attack methods unless long training time is used in the machine learning process. In this paper, we investigate the effectiveness of a neural network method in attacking large XOR PUFs, a neural network method modified to handle training datasets possibly larger than memory capacity. Our study shows that the modified neural network method attains high prediction accuracy while consuming substantially less time for large XOR PUFs than the fastest machine learning code used in all earlier studies known to us. Some of the large XOR PUFs that took existing machine learning codes several days of parallel computing time on high-performance computing servers have been broken by our method in less than two hours, indicating vulnerability of even large XOR PUFs. Discovery of all potential vulnerabilities of a PUF is important since secure application developers need such information for deciding which PUF to choose, and an unidentified vulnerability can lead to security risks for IoT devices." @default.
- W2893712976 created "2018-10-05" @default.
- W2893712976 creator A5011533814 @default.
- W2893712976 creator A5028690312 @default.
- W2893712976 creator A5041388008 @default.
- W2893712976 date "2018-07-01" @default.
- W2893712976 modified "2023-10-06" @default.
- W2893712976 title "A Machine Learning-Based Security Vulnerability Study on XOR PUFs for Resource-Constraint Internet of Things" @default.
- W2893712976 cites W2000171858 @default.
- W2893712976 cites W2088455835 @default.
- W2893712976 cites W2123482651 @default.
- W2893712976 cites W2145858709 @default.
- W2893712976 cites W2265382507 @default.
- W2893712976 cites W2297840895 @default.
- W2893712976 cites W2321234954 @default.
- W2893712976 cites W2765674159 @default.
- W2893712976 cites W4230927117 @default.
- W2893712976 doi "https://doi.org/10.1109/iciot.2018.00014" @default.
- W2893712976 hasPublicationYear "2018" @default.
- W2893712976 type Work @default.
- W2893712976 sameAs 2893712976 @default.
- W2893712976 citedByCount "44" @default.
- W2893712976 countsByYear W28937129762018 @default.
- W2893712976 countsByYear W28937129762019 @default.
- W2893712976 countsByYear W28937129762020 @default.
- W2893712976 countsByYear W28937129762021 @default.
- W2893712976 countsByYear W28937129762022 @default.
- W2893712976 countsByYear W28937129762023 @default.
- W2893712976 crossrefType "proceedings-article" @default.
- W2893712976 hasAuthorship W2893712976A5011533814 @default.
- W2893712976 hasAuthorship W2893712976A5028690312 @default.
- W2893712976 hasAuthorship W2893712976A5041388008 @default.
- W2893712976 hasConcept C108583219 @default.
- W2893712976 hasConcept C113775141 @default.
- W2893712976 hasConcept C119857082 @default.
- W2893712976 hasConcept C149635348 @default.
- W2893712976 hasConcept C154945302 @default.
- W2893712976 hasConcept C178489894 @default.
- W2893712976 hasConcept C38652104 @default.
- W2893712976 hasConcept C41008148 @default.
- W2893712976 hasConcept C50644808 @default.
- W2893712976 hasConcept C95713431 @default.
- W2893712976 hasConceptScore W2893712976C108583219 @default.
- W2893712976 hasConceptScore W2893712976C113775141 @default.
- W2893712976 hasConceptScore W2893712976C119857082 @default.
- W2893712976 hasConceptScore W2893712976C149635348 @default.
- W2893712976 hasConceptScore W2893712976C154945302 @default.
- W2893712976 hasConceptScore W2893712976C178489894 @default.
- W2893712976 hasConceptScore W2893712976C38652104 @default.
- W2893712976 hasConceptScore W2893712976C41008148 @default.
- W2893712976 hasConceptScore W2893712976C50644808 @default.
- W2893712976 hasConceptScore W2893712976C95713431 @default.
- W2893712976 hasLocation W28937129761 @default.
- W2893712976 hasOpenAccess W2893712976 @default.
- W2893712976 hasPrimaryLocation W28937129761 @default.
- W2893712976 hasRelatedWork W2350468095 @default.
- W2893712976 hasRelatedWork W2386365428 @default.
- W2893712976 hasRelatedWork W2766405666 @default.
- W2893712976 hasRelatedWork W2793851158 @default.
- W2893712976 hasRelatedWork W2793987806 @default.
- W2893712976 hasRelatedWork W3004663645 @default.
- W2893712976 hasRelatedWork W3094394807 @default.
- W2893712976 hasRelatedWork W3166681240 @default.
- W2893712976 hasRelatedWork W3211894641 @default.
- W2893712976 hasRelatedWork W4286859242 @default.
- W2893712976 isParatext "false" @default.
- W2893712976 isRetracted "false" @default.
- W2893712976 magId "2893712976" @default.
- W2893712976 workType "article" @default.