Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893733132> ?p ?o ?g. }
- W2893733132 endingPage "99" @default.
- W2893733132 startingPage "84" @default.
- W2893733132 abstract "In this paper, we propose Chimera, a novel hybrid edge computing framework, integrated with the emerging edge cloud radio access network, to augment network-wide vehicle resources for future large-scale vehicular crowdsensing applications, by leveraging a multitude of cooperative vehicles and the virtual machine (VM) pool in the edge cloud via the control of the application manager deployed in the edge cloud. We present a comprehensive framework model and formulate a novel multivehicle and multitask offloading problem, aiming at minimizing the energy consumption of network-wide recruited vehicles serving heterogeneous crowdsensing applications, and meanwhile reconciling both application deadline and vehicle incentive. We invoke Lyapunov optimization framework to design TaskSche, an online task scheduling algorithm, which only utilizes the current system information. As the core components of the algorithm, we propose a task workload assignment policy based on graph transformation and a knapsack-based VM pool resource allocation policy. Rigorous theoretical analyses and extensive trace-driven simulations indicate that our framework achieves superior performance (e.g., 20%-68% energy saving without overstepping application deadlines for network-wide vehicles compared with vehicle local processing) and scales well for a large number of vehicles and applications." @default.
- W2893733132 created "2018-10-05" @default.
- W2893733132 creator A5036000787 @default.
- W2893733132 creator A5044348796 @default.
- W2893733132 creator A5050765754 @default.
- W2893733132 creator A5053568911 @default.
- W2893733132 creator A5076121175 @default.
- W2893733132 date "2019-02-01" @default.
- W2893733132 modified "2023-10-16" @default.
- W2893733132 title "<italic>Chimera</italic>: An Energy-Efficient and Deadline-Aware Hybrid Edge Computing Framework for Vehicular Crowdsensing Applications" @default.
- W2893733132 cites W1593284348 @default.
- W2893733132 cites W1601655690 @default.
- W2893733132 cites W1904504745 @default.
- W2893733132 cites W1976063779 @default.
- W2893733132 cites W2024817366 @default.
- W2893733132 cites W2024949003 @default.
- W2893733132 cites W2033784617 @default.
- W2893733132 cites W2035309464 @default.
- W2893733132 cites W2038957863 @default.
- W2893733132 cites W2067404467 @default.
- W2893733132 cites W2082081352 @default.
- W2893733132 cites W2101092011 @default.
- W2893733132 cites W2104237724 @default.
- W2893733132 cites W2113132620 @default.
- W2893733132 cites W2116175219 @default.
- W2893733132 cites W2137152139 @default.
- W2893733132 cites W2150516182 @default.
- W2893733132 cites W2173226165 @default.
- W2893733132 cites W2195423816 @default.
- W2893733132 cites W2303085036 @default.
- W2893733132 cites W2343050074 @default.
- W2893733132 cites W2343899567 @default.
- W2893733132 cites W2397723600 @default.
- W2893733132 cites W2400861403 @default.
- W2893733132 cites W2482293012 @default.
- W2893733132 cites W2486013602 @default.
- W2893733132 cites W2486687030 @default.
- W2893733132 cites W2522693205 @default.
- W2893733132 cites W2547443968 @default.
- W2893733132 cites W2560083971 @default.
- W2893733132 cites W2587594232 @default.
- W2893733132 cites W2594892208 @default.
- W2893733132 cites W2620276187 @default.
- W2893733132 cites W2625826519 @default.
- W2893733132 cites W2741692976 @default.
- W2893733132 cites W2741784930 @default.
- W2893733132 cites W2744605740 @default.
- W2893733132 cites W2763737552 @default.
- W2893733132 cites W2963783229 @default.
- W2893733132 cites W2964335916 @default.
- W2893733132 cites W3106445841 @default.
- W2893733132 cites W7103816 @default.
- W2893733132 cites W914916633 @default.
- W2893733132 cites W974042900 @default.
- W2893733132 cites W999812600 @default.
- W2893733132 doi "https://doi.org/10.1109/jiot.2018.2872436" @default.
- W2893733132 hasPublicationYear "2019" @default.
- W2893733132 type Work @default.
- W2893733132 sameAs 2893733132 @default.
- W2893733132 citedByCount "69" @default.
- W2893733132 countsByYear W28937331322018 @default.
- W2893733132 countsByYear W28937331322019 @default.
- W2893733132 countsByYear W28937331322020 @default.
- W2893733132 countsByYear W28937331322021 @default.
- W2893733132 countsByYear W28937331322022 @default.
- W2893733132 countsByYear W28937331322023 @default.
- W2893733132 crossrefType "journal-article" @default.
- W2893733132 hasAuthorship W2893733132A5036000787 @default.
- W2893733132 hasAuthorship W2893733132A5044348796 @default.
- W2893733132 hasAuthorship W2893733132A5050765754 @default.
- W2893733132 hasAuthorship W2893733132A5053568911 @default.
- W2893733132 hasAuthorship W2893733132A5076121175 @default.
- W2893733132 hasConcept C111919701 @default.
- W2893733132 hasConcept C113138325 @default.
- W2893733132 hasConcept C11413529 @default.
- W2893733132 hasConcept C120314980 @default.
- W2893733132 hasConcept C162307627 @default.
- W2893733132 hasConcept C162324750 @default.
- W2893733132 hasConcept C18903297 @default.
- W2893733132 hasConcept C206729178 @default.
- W2893733132 hasConcept C21547014 @default.
- W2893733132 hasConcept C2776061582 @default.
- W2893733132 hasConcept C2778456923 @default.
- W2893733132 hasConcept C2780165032 @default.
- W2893733132 hasConcept C31258907 @default.
- W2893733132 hasConcept C41008148 @default.
- W2893733132 hasConcept C76155785 @default.
- W2893733132 hasConcept C79974875 @default.
- W2893733132 hasConcept C86803240 @default.
- W2893733132 hasConceptScore W2893733132C111919701 @default.
- W2893733132 hasConceptScore W2893733132C113138325 @default.
- W2893733132 hasConceptScore W2893733132C11413529 @default.
- W2893733132 hasConceptScore W2893733132C120314980 @default.
- W2893733132 hasConceptScore W2893733132C162307627 @default.
- W2893733132 hasConceptScore W2893733132C162324750 @default.
- W2893733132 hasConceptScore W2893733132C18903297 @default.
- W2893733132 hasConceptScore W2893733132C206729178 @default.
- W2893733132 hasConceptScore W2893733132C21547014 @default.