Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893737501> ?p ?o ?g. }
- W2893737501 endingPage "96" @default.
- W2893737501 startingPage "79" @default.
- W2893737501 abstract "Amdahl’s law, imposing a restriction on the speedup achievable by a multiple number of processors, based on the concept of sequential and parallelizable fractions of computations, has been used to justify, among others, asymmetric chip multiprocessor architectures and concerns of “dark silicon”. This paper demonstrates flaws in Amdahl’s law that (i) in theory no inherently sequential fractions of computations exists (ii) sequential fractions appearing in practice are inherently different from parallelizable fractions and therefore usually have different growth rates and that (iii) the time requirement of sequential fractions can be proportional to the number of processors. However, mathematical analyses are also provided to demonstrate that sequential fractions have negligible effect on speedup if the growth rate of the parallelizable fraction is higher than that of the sequential fraction. Examples from computational geometry are given that Amdahl’s law and its variants fail to represent limits to parallel computation. In particular, Gustafson’s law, claimed to be a refutation of Amdahl’s law by some authors, is shown to contradict established theoretical results. We can conclude that no simple formula or law governing concurrency exists." @default.
- W2893737501 created "2018-10-05" @default.
- W2893737501 creator A5068502470 @default.
- W2893737501 date "2018-01-01" @default.
- W2893737501 modified "2023-09-26" @default.
- W2893737501 title "The Refutation of Amdahl’s Law and Its Variants" @default.
- W2893737501 cites W1496950823 @default.
- W2893737501 cites W1544084545 @default.
- W2893737501 cites W1584086289 @default.
- W2893737501 cites W1885326179 @default.
- W2893737501 cites W1966241942 @default.
- W2893737501 cites W1967810725 @default.
- W2893737501 cites W1972955159 @default.
- W2893737501 cites W1977926680 @default.
- W2893737501 cites W1979566015 @default.
- W2893737501 cites W1991509743 @default.
- W2893737501 cites W1996028864 @default.
- W2893737501 cites W1996117765 @default.
- W2893737501 cites W1996916491 @default.
- W2893737501 cites W2000022682 @default.
- W2893737501 cites W2004618348 @default.
- W2893737501 cites W2012722810 @default.
- W2893737501 cites W2020007061 @default.
- W2893737501 cites W2020572291 @default.
- W2893737501 cites W2023274306 @default.
- W2893737501 cites W2032596233 @default.
- W2893737501 cites W2035720033 @default.
- W2893737501 cites W2038509324 @default.
- W2893737501 cites W2045271686 @default.
- W2893737501 cites W2049533325 @default.
- W2893737501 cites W2049628259 @default.
- W2893737501 cites W2060712743 @default.
- W2893737501 cites W2063800777 @default.
- W2893737501 cites W2070908350 @default.
- W2893737501 cites W2079942837 @default.
- W2893737501 cites W2084764151 @default.
- W2893737501 cites W2085467310 @default.
- W2893737501 cites W2089062581 @default.
- W2893737501 cites W2097818489 @default.
- W2893737501 cites W2099714261 @default.
- W2893737501 cites W2116460500 @default.
- W2893737501 cites W2139932807 @default.
- W2893737501 cites W2140130374 @default.
- W2893737501 cites W2143782638 @default.
- W2893737501 cites W2147270269 @default.
- W2893737501 cites W2147504831 @default.
- W2893737501 cites W2150871235 @default.
- W2893737501 cites W2160751058 @default.
- W2893737501 cites W2173213060 @default.
- W2893737501 cites W2180145773 @default.
- W2893737501 cites W2231865924 @default.
- W2893737501 cites W2250636351 @default.
- W2893737501 cites W2259879138 @default.
- W2893737501 cites W2345462634 @default.
- W2893737501 cites W2464065967 @default.
- W2893737501 cites W2515029334 @default.
- W2893737501 cites W2525247697 @default.
- W2893737501 cites W2563505417 @default.
- W2893737501 cites W2597643028 @default.
- W2893737501 cites W2597809628 @default.
- W2893737501 cites W27782804 @default.
- W2893737501 cites W3010061427 @default.
- W2893737501 cites W3136374236 @default.
- W2893737501 cites W3138798301 @default.
- W2893737501 cites W4246067458 @default.
- W2893737501 cites W4252315652 @default.
- W2893737501 doi "https://doi.org/10.1007/978-3-662-58039-4_5" @default.
- W2893737501 hasPublicationYear "2018" @default.
- W2893737501 type Work @default.
- W2893737501 sameAs 2893737501 @default.
- W2893737501 citedByCount "0" @default.
- W2893737501 crossrefType "book-chapter" @default.
- W2893737501 hasAuthorship W2893737501A5068502470 @default.
- W2893737501 hasConcept C11413529 @default.
- W2893737501 hasConcept C148047603 @default.
- W2893737501 hasConcept C149629883 @default.
- W2893737501 hasConcept C173608175 @default.
- W2893737501 hasConcept C178790620 @default.
- W2893737501 hasConcept C185592680 @default.
- W2893737501 hasConcept C41008148 @default.
- W2893737501 hasConcept C45374587 @default.
- W2893737501 hasConcept C4822641 @default.
- W2893737501 hasConcept C68339613 @default.
- W2893737501 hasConceptScore W2893737501C11413529 @default.
- W2893737501 hasConceptScore W2893737501C148047603 @default.
- W2893737501 hasConceptScore W2893737501C149629883 @default.
- W2893737501 hasConceptScore W2893737501C173608175 @default.
- W2893737501 hasConceptScore W2893737501C178790620 @default.
- W2893737501 hasConceptScore W2893737501C185592680 @default.
- W2893737501 hasConceptScore W2893737501C41008148 @default.
- W2893737501 hasConceptScore W2893737501C45374587 @default.
- W2893737501 hasConceptScore W2893737501C4822641 @default.
- W2893737501 hasConceptScore W2893737501C68339613 @default.
- W2893737501 hasLocation W28937375011 @default.
- W2893737501 hasOpenAccess W2893737501 @default.
- W2893737501 hasPrimaryLocation W28937375011 @default.
- W2893737501 hasRelatedWork W1542279758 @default.
- W2893737501 hasRelatedWork W1980364701 @default.