Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893750435> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2893750435 abstract "Abstract In this study, we develop a new Approximate Dantzig–Wolfe (ADW) decomposition method for variational inequalities (VI) based on the work by Chung and Fuller (2010) and Celebi and Fuller (2013). The decomposed VI consists of one approximate subproblem, which is nonlinear programming (NLP) or linear programming (LP) and one approximate master problem, which is an NLP. Note that we can have many approximate subproblems depending upon the approximation method and the structure of the constraint set. On the other hand, if the VI mapping in the approximate master problem is equal to that in the iterative methods for solving VI, then the ADW-VI simply consists of the computational sequence of solving NLP (or LP) subproblem(s) and NLP master problem in an iterative manner. That is, the iterative methods for VI and the DW decomposition method are combined into a single iterative loop. The details of the method are presented as well as an extension of the theory from Chung and Fuller (2010) and Celebi and Fuller (2013). In addition, numerical results are provided based on two time-of-use pricing models of Ontario electricity market in Celebi and Fuller (2013), but for which the new master problem approximation different from Celebi and Fuller (2013) has been used. These results validate ADW-VI, and in some computational instances, indicates dramatic improvements in solution times as compared to reference methods, like diagonalization method of Dafermos (1983). Another set of numerical results, based on a simple electricity market, illustrates that ADW-VI can be faster than the PATH solver when solving large-scale problem instances." @default.
- W2893750435 created "2018-10-05" @default.
- W2893750435 creator A5088228384 @default.
- W2893750435 date "2019-03-01" @default.
- W2893750435 modified "2023-09-26" @default.
- W2893750435 title "Approximate Dantzig–Wolfe decomposition to solve a class of variational inequality problems with an illustrative application to electricity market models" @default.
- W2893750435 cites W1551877617 @default.
- W2893750435 cites W1969535442 @default.
- W2893750435 cites W1978632776 @default.
- W2893750435 cites W1983743030 @default.
- W2893750435 cites W1984147277 @default.
- W2893750435 cites W2001024683 @default.
- W2893750435 cites W2031740021 @default.
- W2893750435 cites W2033619170 @default.
- W2893750435 cites W2036531676 @default.
- W2893750435 cites W2072310184 @default.
- W2893750435 cites W2084603067 @default.
- W2893750435 cites W2087457678 @default.
- W2893750435 cites W2093246563 @default.
- W2893750435 cites W2152939240 @default.
- W2893750435 cites W2153539612 @default.
- W2893750435 cites W2156341689 @default.
- W2893750435 cites W2158503783 @default.
- W2893750435 cites W2161774775 @default.
- W2893750435 cites W2168919203 @default.
- W2893750435 cites W2306243954 @default.
- W2893750435 cites W2402883398 @default.
- W2893750435 cites W2560746078 @default.
- W2893750435 doi "https://doi.org/10.1016/j.eswa.2018.09.043" @default.
- W2893750435 hasPublicationYear "2019" @default.
- W2893750435 type Work @default.
- W2893750435 sameAs 2893750435 @default.
- W2893750435 citedByCount "0" @default.
- W2893750435 crossrefType "journal-article" @default.
- W2893750435 hasAuthorship W2893750435A5088228384 @default.
- W2893750435 hasConcept C11413529 @default.
- W2893750435 hasConcept C124681953 @default.
- W2893750435 hasConcept C126255220 @default.
- W2893750435 hasConcept C159694833 @default.
- W2893750435 hasConcept C161999928 @default.
- W2893750435 hasConcept C177264268 @default.
- W2893750435 hasConcept C18903297 @default.
- W2893750435 hasConcept C199360897 @default.
- W2893750435 hasConcept C2524010 @default.
- W2893750435 hasConcept C2776036281 @default.
- W2893750435 hasConcept C2778029271 @default.
- W2893750435 hasConcept C2778112365 @default.
- W2893750435 hasConcept C33923547 @default.
- W2893750435 hasConcept C41008148 @default.
- W2893750435 hasConcept C41045048 @default.
- W2893750435 hasConcept C54355233 @default.
- W2893750435 hasConcept C86803240 @default.
- W2893750435 hasConceptScore W2893750435C11413529 @default.
- W2893750435 hasConceptScore W2893750435C124681953 @default.
- W2893750435 hasConceptScore W2893750435C126255220 @default.
- W2893750435 hasConceptScore W2893750435C159694833 @default.
- W2893750435 hasConceptScore W2893750435C161999928 @default.
- W2893750435 hasConceptScore W2893750435C177264268 @default.
- W2893750435 hasConceptScore W2893750435C18903297 @default.
- W2893750435 hasConceptScore W2893750435C199360897 @default.
- W2893750435 hasConceptScore W2893750435C2524010 @default.
- W2893750435 hasConceptScore W2893750435C2776036281 @default.
- W2893750435 hasConceptScore W2893750435C2778029271 @default.
- W2893750435 hasConceptScore W2893750435C2778112365 @default.
- W2893750435 hasConceptScore W2893750435C33923547 @default.
- W2893750435 hasConceptScore W2893750435C41008148 @default.
- W2893750435 hasConceptScore W2893750435C41045048 @default.
- W2893750435 hasConceptScore W2893750435C54355233 @default.
- W2893750435 hasConceptScore W2893750435C86803240 @default.
- W2893750435 hasLocation W28937504351 @default.
- W2893750435 hasOpenAccess W2893750435 @default.
- W2893750435 hasPrimaryLocation W28937504351 @default.
- W2893750435 hasRelatedWork W1986801741 @default.
- W2893750435 hasRelatedWork W2043291486 @default.
- W2893750435 hasRelatedWork W2185815739 @default.
- W2893750435 hasRelatedWork W2348075097 @default.
- W2893750435 hasRelatedWork W2367454440 @default.
- W2893750435 hasRelatedWork W2372227578 @default.
- W2893750435 hasRelatedWork W2377921614 @default.
- W2893750435 hasRelatedWork W2970890202 @default.
- W2893750435 hasRelatedWork W977339556 @default.
- W2893750435 hasRelatedWork W2463593522 @default.
- W2893750435 isParatext "false" @default.
- W2893750435 isRetracted "false" @default.
- W2893750435 magId "2893750435" @default.
- W2893750435 workType "article" @default.