Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893766950> ?p ?o ?g. }
- W2893766950 endingPage "260" @default.
- W2893766950 startingPage "248" @default.
- W2893766950 abstract "In alumina rotary kiln production, adjusting the coal feeding rate is the main way to maintain sintering temperature stability during the sintering process, which plays a critical role in improving production quality and reducing energy consumption. In this paper, a novel integrated method (termed PSR-PCA-HMM) is proposed to predict the coal feeding state for optimal control by integrating principal component analysis (PCA) and the hidden Markov model (HMM) based on phase space reconstruction (PSR). First, the thermal signals in rotary kilns are shown to have obvious chaotic characteristics. Second, PSR is utilized to extract the features of the sintering process in a rotary kiln, and PCA is proposed to efficiently reduce the redundancy of the high-dimensional feature space reconstructed by the PSR. Then, considering the nonlinear dynamic characteristic of the sintering process, three HMM models are built to capture the nonlinear dynamic relationship between thermal variables and the corresponding coal feeding state. Finally, the posterior probabilities with respect to the three HMM models are estimated by using the forward algorithm, and the final prediction of coal feeding is determined by the maximized likelihood estimation. Based on field data, the application results indicate that the PSR-PCA-HMM method can significantly improve prediction performance and help realize stable closed-loop control for the sintering temperature." @default.
- W2893766950 created "2018-10-05" @default.
- W2893766950 creator A5011069549 @default.
- W2893766950 creator A5054763702 @default.
- W2893766950 creator A5071798264 @default.
- W2893766950 creator A5087861041 @default.
- W2893766950 date "2018-12-01" @default.
- W2893766950 modified "2023-10-11" @default.
- W2893766950 title "Prediction of coal feeding during sintering in a rotary kiln based on statistical learning in the phase space" @default.
- W2893766950 cites W1460989600 @default.
- W2893766950 cites W1634828275 @default.
- W2893766950 cites W1882687204 @default.
- W2893766950 cites W1923027492 @default.
- W2893766950 cites W1967989262 @default.
- W2893766950 cites W1970365170 @default.
- W2893766950 cites W1973683233 @default.
- W2893766950 cites W1976570823 @default.
- W2893766950 cites W1979659993 @default.
- W2893766950 cites W1979673648 @default.
- W2893766950 cites W1982904001 @default.
- W2893766950 cites W1997197783 @default.
- W2893766950 cites W2009684895 @default.
- W2893766950 cites W2010408198 @default.
- W2893766950 cites W2011691646 @default.
- W2893766950 cites W2018871719 @default.
- W2893766950 cites W2026202676 @default.
- W2893766950 cites W2031246421 @default.
- W2893766950 cites W2031365860 @default.
- W2893766950 cites W2042723220 @default.
- W2893766950 cites W2046658914 @default.
- W2893766950 cites W2051530197 @default.
- W2893766950 cites W2054337296 @default.
- W2893766950 cites W2070716553 @default.
- W2893766950 cites W2070986256 @default.
- W2893766950 cites W2075540692 @default.
- W2893766950 cites W2077234731 @default.
- W2893766950 cites W2077402214 @default.
- W2893766950 cites W2090913570 @default.
- W2893766950 cites W2126831543 @default.
- W2893766950 cites W2134383471 @default.
- W2893766950 cites W2134676383 @default.
- W2893766950 cites W2153906985 @default.
- W2893766950 cites W2168156818 @default.
- W2893766950 cites W2169533279 @default.
- W2893766950 cites W220710019 @default.
- W2893766950 cites W2244071043 @default.
- W2893766950 cites W2278674684 @default.
- W2893766950 cites W2321860565 @default.
- W2893766950 cites W2333988306 @default.
- W2893766950 cites W2334267608 @default.
- W2893766950 cites W2517577604 @default.
- W2893766950 cites W2603836364 @default.
- W2893766950 cites W2731024278 @default.
- W2893766950 cites W377847929 @default.
- W2893766950 cites W839719836 @default.
- W2893766950 doi "https://doi.org/10.1016/j.isatra.2018.09.015" @default.
- W2893766950 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30269919" @default.
- W2893766950 hasPublicationYear "2018" @default.
- W2893766950 type Work @default.
- W2893766950 sameAs 2893766950 @default.
- W2893766950 citedByCount "10" @default.
- W2893766950 countsByYear W28937669502020 @default.
- W2893766950 countsByYear W28937669502021 @default.
- W2893766950 countsByYear W28937669502022 @default.
- W2893766950 countsByYear W28937669502023 @default.
- W2893766950 crossrefType "journal-article" @default.
- W2893766950 hasAuthorship W2893766950A5011069549 @default.
- W2893766950 hasAuthorship W2893766950A5054763702 @default.
- W2893766950 hasAuthorship W2893766950A5071798264 @default.
- W2893766950 hasAuthorship W2893766950A5087861041 @default.
- W2893766950 hasConcept C111919701 @default.
- W2893766950 hasConcept C11413529 @default.
- W2893766950 hasConcept C121332964 @default.
- W2893766950 hasConcept C127413603 @default.
- W2893766950 hasConcept C152124472 @default.
- W2893766950 hasConcept C153180895 @default.
- W2893766950 hasConcept C154945302 @default.
- W2893766950 hasConcept C158622935 @default.
- W2893766950 hasConcept C159985019 @default.
- W2893766950 hasConcept C19229882 @default.
- W2893766950 hasConcept C192562407 @default.
- W2893766950 hasConcept C23224414 @default.
- W2893766950 hasConcept C27438332 @default.
- W2893766950 hasConcept C2775924081 @default.
- W2893766950 hasConcept C2776214959 @default.
- W2893766950 hasConcept C2777581544 @default.
- W2893766950 hasConcept C41008148 @default.
- W2893766950 hasConcept C47446073 @default.
- W2893766950 hasConcept C518851703 @default.
- W2893766950 hasConcept C548081761 @default.
- W2893766950 hasConcept C62520636 @default.
- W2893766950 hasConceptScore W2893766950C111919701 @default.
- W2893766950 hasConceptScore W2893766950C11413529 @default.
- W2893766950 hasConceptScore W2893766950C121332964 @default.
- W2893766950 hasConceptScore W2893766950C127413603 @default.
- W2893766950 hasConceptScore W2893766950C152124472 @default.
- W2893766950 hasConceptScore W2893766950C153180895 @default.
- W2893766950 hasConceptScore W2893766950C154945302 @default.