Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893769615> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2893769615 endingPage "388" @default.
- W2893769615 startingPage "379" @default.
- W2893769615 abstract "Abstract The use of statistical and machine learning approaches to predict the compressive strength of concrete based on mixture proportions, on account of its industrial importance, has received significant attention. However, previous studies have been limited to small, laboratory-produced data sets. This study presents the first analysis of a large data set (>10,000 observations) of measured compressive strengths from actual (job-site) mixtures and their corresponding actual mixture proportions. Predictive models are applied to examine relationships between the mixture design variables and strength, and to thereby develop an estimate of the (28-day) strength. These models are also applied to a laboratory-based data set of strength measurements published by Yeh et al. (1998) and the performance of the models across both data sets is compared. Furthermore, to illustrate the value of such models beyond simply strength prediction, they are used to design optimal concrete mixtures that minimize cost and embodied CO2 impact while satisfying imposed target strengths." @default.
- W2893769615 created "2018-10-05" @default.
- W2893769615 creator A5015903713 @default.
- W2893769615 creator A5044493714 @default.
- W2893769615 creator A5076827882 @default.
- W2893769615 creator A5084229134 @default.
- W2893769615 creator A5091227517 @default.
- W2893769615 date "2019-01-01" @default.
- W2893769615 modified "2023-10-17" @default.
- W2893769615 title "Can the compressive strength of concrete be estimated from knowledge of the mixture proportions?: New insights from statistical analysis and machine learning methods" @default.
- W2893769615 cites W1967366211 @default.
- W2893769615 cites W1999517659 @default.
- W2893769615 cites W2005984571 @default.
- W2893769615 cites W2006973870 @default.
- W2893769615 cites W2020242546 @default.
- W2893769615 cites W2022525371 @default.
- W2893769615 cites W2032962877 @default.
- W2893769615 cites W2033129739 @default.
- W2893769615 cites W2045521691 @default.
- W2893769615 cites W2061933243 @default.
- W2893769615 cites W2070087434 @default.
- W2893769615 cites W2072388357 @default.
- W2893769615 cites W2072420435 @default.
- W2893769615 cites W2078462178 @default.
- W2893769615 cites W2088053778 @default.
- W2893769615 cites W2092582124 @default.
- W2893769615 cites W2126641241 @default.
- W2893769615 cites W2148521521 @default.
- W2893769615 cites W2167849100 @default.
- W2893769615 cites W2171033594 @default.
- W2893769615 cites W2328440700 @default.
- W2893769615 doi "https://doi.org/10.1016/j.cemconres.2018.09.006" @default.
- W2893769615 hasPublicationYear "2019" @default.
- W2893769615 type Work @default.
- W2893769615 sameAs 2893769615 @default.
- W2893769615 citedByCount "177" @default.
- W2893769615 countsByYear W28937696152019 @default.
- W2893769615 countsByYear W28937696152020 @default.
- W2893769615 countsByYear W28937696152021 @default.
- W2893769615 countsByYear W28937696152022 @default.
- W2893769615 countsByYear W28937696152023 @default.
- W2893769615 crossrefType "journal-article" @default.
- W2893769615 hasAuthorship W2893769615A5015903713 @default.
- W2893769615 hasAuthorship W2893769615A5044493714 @default.
- W2893769615 hasAuthorship W2893769615A5076827882 @default.
- W2893769615 hasAuthorship W2893769615A5084229134 @default.
- W2893769615 hasAuthorship W2893769615A5091227517 @default.
- W2893769615 hasBestOaLocation W28937696151 @default.
- W2893769615 hasConcept C105795698 @default.
- W2893769615 hasConcept C159985019 @default.
- W2893769615 hasConcept C192562407 @default.
- W2893769615 hasConcept C2986587452 @default.
- W2893769615 hasConcept C30407753 @default.
- W2893769615 hasConcept C33923547 @default.
- W2893769615 hasConceptScore W2893769615C105795698 @default.
- W2893769615 hasConceptScore W2893769615C159985019 @default.
- W2893769615 hasConceptScore W2893769615C192562407 @default.
- W2893769615 hasConceptScore W2893769615C2986587452 @default.
- W2893769615 hasConceptScore W2893769615C30407753 @default.
- W2893769615 hasConceptScore W2893769615C33923547 @default.
- W2893769615 hasFunder F4320306076 @default.
- W2893769615 hasFunder F4320332502 @default.
- W2893769615 hasLocation W28937696151 @default.
- W2893769615 hasOpenAccess W2893769615 @default.
- W2893769615 hasPrimaryLocation W28937696151 @default.
- W2893769615 hasRelatedWork W1994103032 @default.
- W2893769615 hasRelatedWork W2011052271 @default.
- W2893769615 hasRelatedWork W2014315543 @default.
- W2893769615 hasRelatedWork W2051270029 @default.
- W2893769615 hasRelatedWork W2082293200 @default.
- W2893769615 hasRelatedWork W2137307547 @default.
- W2893769615 hasRelatedWork W2380293314 @default.
- W2893769615 hasRelatedWork W2943188944 @default.
- W2893769615 hasRelatedWork W4285802202 @default.
- W2893769615 hasRelatedWork W4317433637 @default.
- W2893769615 hasVolume "115" @default.
- W2893769615 isParatext "false" @default.
- W2893769615 isRetracted "false" @default.
- W2893769615 magId "2893769615" @default.
- W2893769615 workType "article" @default.