Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893777543> ?p ?o ?g. }
- W2893777543 endingPage "59" @default.
- W2893777543 startingPage "59" @default.
- W2893777543 abstract "Due to the occult anatomic location of the nasopharynx and frequent presence of adenoid hyperplasia, the positive rate for malignancy identification during biopsy is low, thus leading to delayed or missed diagnosis for nasopharyngeal malignancies upon initial attempt. Here, we aimed to develop an artificial intelligence tool to detect nasopharyngeal malignancies under endoscopic examination based on deep learning.An endoscopic images-based nasopharyngeal malignancy detection model (eNPM-DM) consisting of a fully convolutional network based on the inception architecture was developed and fine-tuned using separate training and validation sets for both classification and segmentation. Briefly, a total of 28,966 qualified images were collected. Among these images, 27,536 biopsy-proven images from 7951 individuals obtained from January 1st, 2008, to December 31st, 2016, were split into the training, validation and test sets at a ratio of 7:1:2 using simple randomization. Additionally, 1430 images obtained from January 1st, 2017, to March 31st, 2017, were used as a prospective test set to compare the performance of the established model against oncologist evaluation. The dice similarity coefficient (DSC) was used to evaluate the efficiency of eNPM-DM in automatic segmentation of malignant area from the background of nasopharyngeal endoscopic images, by comparing automatic segmentation with manual segmentation performed by the experts.All images were histopathologically confirmed, and included 5713 (19.7%) normal control, 19,107 (66.0%) nasopharyngeal carcinoma (NPC), 335 (1.2%) NPC and 3811 (13.2%) benign diseases. The eNPM-DM attained an overall accuracy of 88.7% (95% confidence interval (CI) 87.8%-89.5%) in detecting malignancies in the test set. In the prospective comparison phase, eNPM-DM outperformed the experts: the overall accuracy was 88.0% (95% CI 86.1%-89.6%) vs. 80.5% (95% CI 77.0%-84.0%). The eNPM-DM required less time (40 s vs. 110.0 ± 5.8 min) and exhibited encouraging performance in automatic segmentation of nasopharyngeal malignant area from the background, with an average DSC of 0.78 ± 0.24 and 0.75 ± 0.26 in the test and prospective test sets, respectively.The eNPM-DM outperformed oncologist evaluation in diagnostic classification of nasopharyngeal mass into benign versus malignant, and realized automatic segmentation of malignant area from the background of nasopharyngeal endoscopic images." @default.
- W2893777543 created "2018-10-05" @default.
- W2893777543 creator A5005614740 @default.
- W2893777543 creator A5005782389 @default.
- W2893777543 creator A5009521293 @default.
- W2893777543 creator A5014400316 @default.
- W2893777543 creator A5019232565 @default.
- W2893777543 creator A5021332443 @default.
- W2893777543 creator A5023349881 @default.
- W2893777543 creator A5025156587 @default.
- W2893777543 creator A5026136156 @default.
- W2893777543 creator A5026796732 @default.
- W2893777543 creator A5029695887 @default.
- W2893777543 creator A5031021374 @default.
- W2893777543 creator A5042578262 @default.
- W2893777543 creator A5045080979 @default.
- W2893777543 creator A5048052584 @default.
- W2893777543 creator A5049806572 @default.
- W2893777543 creator A5050252452 @default.
- W2893777543 creator A5051808133 @default.
- W2893777543 creator A5054444050 @default.
- W2893777543 creator A5055665508 @default.
- W2893777543 creator A5059928860 @default.
- W2893777543 creator A5061152137 @default.
- W2893777543 creator A5063145199 @default.
- W2893777543 creator A5066523907 @default.
- W2893777543 creator A5069686416 @default.
- W2893777543 creator A5069882719 @default.
- W2893777543 creator A5071191068 @default.
- W2893777543 creator A5078326314 @default.
- W2893777543 creator A5078729255 @default.
- W2893777543 creator A5082788358 @default.
- W2893777543 creator A5084047711 @default.
- W2893777543 creator A5085762574 @default.
- W2893777543 creator A5086305933 @default.
- W2893777543 creator A5086392545 @default.
- W2893777543 creator A5087898022 @default.
- W2893777543 date "2018-09-25" @default.
- W2893777543 modified "2023-10-14" @default.
- W2893777543 title "Development and validation of an endoscopic images-based deep learning model for detection with nasopharyngeal malignancies" @default.
- W2893777543 cites W1139856065 @default.
- W2893777543 cites W2000038676 @default.
- W2893777543 cites W2098518268 @default.
- W2893777543 cites W2113470349 @default.
- W2893777543 cites W2117539524 @default.
- W2893777543 cites W2121179939 @default.
- W2893777543 cites W2144817320 @default.
- W2893777543 cites W2145339207 @default.
- W2893777543 cites W2146170423 @default.
- W2893777543 cites W2148593237 @default.
- W2893777543 cites W216626996 @default.
- W2893777543 cites W2257979135 @default.
- W2893777543 cites W2287952708 @default.
- W2893777543 cites W2395611524 @default.
- W2893777543 cites W2470130773 @default.
- W2893777543 cites W2487275017 @default.
- W2893777543 cites W24921433 @default.
- W2893777543 cites W2531444579 @default.
- W2893777543 cites W2541669745 @default.
- W2893777543 cites W2557738935 @default.
- W2893777543 cites W2581082771 @default.
- W2893777543 cites W2585845563 @default.
- W2893777543 cites W2592965701 @default.
- W2893777543 cites W2594760301 @default.
- W2893777543 cites W2608231518 @default.
- W2893777543 cites W2610332124 @default.
- W2893777543 cites W2624699030 @default.
- W2893777543 cites W2731899572 @default.
- W2893777543 cites W2741907166 @default.
- W2893777543 cites W2765095566 @default.
- W2893777543 cites W2765527079 @default.
- W2893777543 cites W2778113922 @default.
- W2893777543 cites W2783201053 @default.
- W2893777543 cites W4293384264 @default.
- W2893777543 doi "https://doi.org/10.1186/s40880-018-0325-9" @default.
- W2893777543 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6156962" @default.
- W2893777543 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30253801" @default.
- W2893777543 hasPublicationYear "2018" @default.
- W2893777543 type Work @default.
- W2893777543 sameAs 2893777543 @default.
- W2893777543 citedByCount "39" @default.
- W2893777543 countsByYear W28937775432019 @default.
- W2893777543 countsByYear W28937775432020 @default.
- W2893777543 countsByYear W28937775432021 @default.
- W2893777543 countsByYear W28937775432022 @default.
- W2893777543 countsByYear W28937775432023 @default.
- W2893777543 crossrefType "journal-article" @default.
- W2893777543 hasAuthorship W2893777543A5005614740 @default.
- W2893777543 hasAuthorship W2893777543A5005782389 @default.
- W2893777543 hasAuthorship W2893777543A5009521293 @default.
- W2893777543 hasAuthorship W2893777543A5014400316 @default.
- W2893777543 hasAuthorship W2893777543A5019232565 @default.
- W2893777543 hasAuthorship W2893777543A5021332443 @default.
- W2893777543 hasAuthorship W2893777543A5023349881 @default.
- W2893777543 hasAuthorship W2893777543A5025156587 @default.
- W2893777543 hasAuthorship W2893777543A5026136156 @default.
- W2893777543 hasAuthorship W2893777543A5026796732 @default.
- W2893777543 hasAuthorship W2893777543A5029695887 @default.