Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893797198> ?p ?o ?g. }
- W2893797198 endingPage "1528" @default.
- W2893797198 startingPage "1528" @default.
- W2893797198 abstract "Maize (zee mays L.) is one of the most important grain crops in China. Lodging is a natural disaster that can cause significant yield losses and threaten food security. Lodging identification and analysis contributes to evaluate disaster losses and cultivates lodging-resistant maize varieties. In this study, we collected visible and multispectral images with an unmanned aerial vehicle (UAV), and introduce a comprehensive methodology and workflow to extract lodging features from UAV imagery. We use statistical methods to screen several potential feature factors (e.g., texture, canopy structure, spectral characteristics, and terrain), and construct two nomograms (i.e., Model-1 and Model-2) with better validation performance based on selected feature factors. Model-2 was superior to Model-1 in term of its discrimination ability, but had an over-fitting phenomenon when the predicted probability of lodging went from 0.2 to 0.4. The results show that the nomogram could not only predict the occurrence probability of lodging, but also explore the underlying association between maize lodging and the selected feature factors. Compared with spectral features, terrain features, texture features, canopy cover, and genetic background, canopy structural features were more conclusive in discriminating whether maize lodging occurs at the plot scale. Using nomogram analysis, we identified protective factors (i.e., normalized difference vegetation index, NDVI and canopy elevation relief ratio, CRR) and risk factors (i.e., Hcv1) related to maize lodging, and also found a problem of terrain spatial variability that is easily overlooked in lodging-resistant breeding trials." @default.
- W2893797198 created "2018-10-05" @default.
- W2893797198 creator A5005698391 @default.
- W2893797198 creator A5017381482 @default.
- W2893797198 creator A5020713851 @default.
- W2893797198 creator A5039880991 @default.
- W2893797198 creator A5057106887 @default.
- W2893797198 creator A5075782732 @default.
- W2893797198 creator A5076942238 @default.
- W2893797198 creator A5081731800 @default.
- W2893797198 date "2018-09-23" @default.
- W2893797198 modified "2023-10-18" @default.
- W2893797198 title "Quantitative Identification of Maize Lodging-Causing Feature Factors Using Unmanned Aerial Vehicle Images and a Nomogram Computation" @default.
- W2893797198 cites W1791919297 @default.
- W2893797198 cites W1968314959 @default.
- W2893797198 cites W1996356000 @default.
- W2893797198 cites W2006376189 @default.
- W2893797198 cites W2009637031 @default.
- W2893797198 cites W2023639956 @default.
- W2893797198 cites W2025007742 @default.
- W2893797198 cites W2025384267 @default.
- W2893797198 cites W2033263428 @default.
- W2893797198 cites W2034366255 @default.
- W2893797198 cites W2037668591 @default.
- W2893797198 cites W2038947597 @default.
- W2893797198 cites W2054274590 @default.
- W2893797198 cites W2055472916 @default.
- W2893797198 cites W2055700267 @default.
- W2893797198 cites W2055933090 @default.
- W2893797198 cites W2063623478 @default.
- W2893797198 cites W2064636932 @default.
- W2893797198 cites W2068216760 @default.
- W2893797198 cites W2074932800 @default.
- W2893797198 cites W2084701993 @default.
- W2893797198 cites W2093946637 @default.
- W2893797198 cites W2101365296 @default.
- W2893797198 cites W2101861337 @default.
- W2893797198 cites W2106434465 @default.
- W2893797198 cites W2108358988 @default.
- W2893797198 cites W2112200626 @default.
- W2893797198 cites W2117200996 @default.
- W2893797198 cites W2117438495 @default.
- W2893797198 cites W2133059825 @default.
- W2893797198 cites W2137799805 @default.
- W2893797198 cites W2149686378 @default.
- W2893797198 cites W2152575748 @default.
- W2893797198 cites W2152783089 @default.
- W2893797198 cites W2157996158 @default.
- W2893797198 cites W2162527214 @default.
- W2893797198 cites W2163450852 @default.
- W2893797198 cites W2165232124 @default.
- W2893797198 cites W2170037730 @default.
- W2893797198 cites W2238246091 @default.
- W2893797198 cites W2467491686 @default.
- W2893797198 cites W2492683009 @default.
- W2893797198 cites W2509175975 @default.
- W2893797198 cites W2513195333 @default.
- W2893797198 cites W2525840172 @default.
- W2893797198 cites W2552742159 @default.
- W2893797198 cites W2565531507 @default.
- W2893797198 cites W2622954938 @default.
- W2893797198 cites W2624443265 @default.
- W2893797198 cites W2731986855 @default.
- W2893797198 cites W2737615274 @default.
- W2893797198 cites W2752292611 @default.
- W2893797198 cites W2752877885 @default.
- W2893797198 cites W2772965906 @default.
- W2893797198 cites W2791160863 @default.
- W2893797198 cites W2793761229 @default.
- W2893797198 cites W563406589 @default.
- W2893797198 cites W934015849 @default.
- W2893797198 doi "https://doi.org/10.3390/rs10101528" @default.
- W2893797198 hasPublicationYear "2018" @default.
- W2893797198 type Work @default.
- W2893797198 sameAs 2893797198 @default.
- W2893797198 citedByCount "36" @default.
- W2893797198 countsByYear W28937971982019 @default.
- W2893797198 countsByYear W28937971982020 @default.
- W2893797198 countsByYear W28937971982021 @default.
- W2893797198 countsByYear W28937971982022 @default.
- W2893797198 countsByYear W28937971982023 @default.
- W2893797198 crossrefType "journal-article" @default.
- W2893797198 hasAuthorship W2893797198A5005698391 @default.
- W2893797198 hasAuthorship W2893797198A5017381482 @default.
- W2893797198 hasAuthorship W2893797198A5020713851 @default.
- W2893797198 hasAuthorship W2893797198A5039880991 @default.
- W2893797198 hasAuthorship W2893797198A5057106887 @default.
- W2893797198 hasAuthorship W2893797198A5075782732 @default.
- W2893797198 hasAuthorship W2893797198A5076942238 @default.
- W2893797198 hasAuthorship W2893797198A5081731800 @default.
- W2893797198 hasBestOaLocation W28937971981 @default.
- W2893797198 hasConcept C101000010 @default.
- W2893797198 hasConcept C138885662 @default.
- W2893797198 hasConcept C1549246 @default.
- W2893797198 hasConcept C161840515 @default.
- W2893797198 hasConcept C173163844 @default.
- W2893797198 hasConcept C18903297 @default.
- W2893797198 hasConcept C205649164 @default.