Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893810779> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2893810779 abstract "This work generalizes the interaction measure of multi-information known in probability theory to finite-level quantum systems. This is done in the more general context of the entropy distance from an exponential family. One of the most well-known measures of stochastic dependence is multi-information, applied in various fields including Neuroscience and Statistical Mechanics. Multi-information is the entropy distance from an exponential family. In statistics, an exponential family is a very familiar parametric model, it admits a simple geometric description of entropy distance and maximum likelihood estimation by mean values. But a complete description of these concepts requires to study extensions of a family, an investigation that was started by N. N. Cencov and O. Barndorff-Nielsen and continued principally by I. Csiszar and F. Matus. Very little is known about extensions of an exponential family for a finite-level quantum system. In this thesis we consider mean value parameters of the statistic of such a family and a suitable extension thereof. Generalizing probability theory, we prove that the parameters describe the entropy distance from the family and they parametrize its rIclosure consisting of the points approximated in relative entropy. The dimension function of a local maximizer of entropy distance is bounded by the dimension of the family. We show that the rI-closure of a Gibbs family consists of the maximum entropy ensembles. A new and generic phenomenon of a non-abelian exponential family is the appearance of non-exposed faces of the convex mean value set. We prove that mean values of the closure of an e-geodesic included in the family meet only the relative interior of exposed faces. Unlike in finite probability spaces there are examples with a discontinuous entropy distance, the continuity being equivalent to equality of rI-closure and topological closure of the family. Examples suggest that the topology of an exponential family is related to the topology of associated projector lattices and to open projections and symmetrizations of state spaces. We conclude that multi-information for a quantum system is a continuous function equal to the entropy distance from a factorizable family. For analysis of a factorizable family we supply a partial classification of convex exponential families. As a perspective to a dynamical situation we examine a measure of temporal interaction for abelian systems, which is related to multi information." @default.
- W2893810779 created "2018-10-05" @default.
- W2893810779 creator A5073581559 @default.
- W2893810779 date "2010-01-01" @default.
- W2893810779 modified "2023-09-26" @default.
- W2893810779 title "Exponential Families with Incompatible Statistics and Their Entropy Distance" @default.
- W2893810779 hasPublicationYear "2010" @default.
- W2893810779 type Work @default.
- W2893810779 sameAs 2893810779 @default.
- W2893810779 citedByCount "5" @default.
- W2893810779 countsByYear W28938107792016 @default.
- W2893810779 countsByYear W28938107792021 @default.
- W2893810779 crossrefType "dissertation" @default.
- W2893810779 hasAuthorship W2893810779A5073581559 @default.
- W2893810779 hasConcept C105795698 @default.
- W2893810779 hasConcept C106301342 @default.
- W2893810779 hasConcept C114614502 @default.
- W2893810779 hasConcept C118615104 @default.
- W2893810779 hasConcept C121332964 @default.
- W2893810779 hasConcept C121864883 @default.
- W2893810779 hasConcept C21031990 @default.
- W2893810779 hasConcept C28826006 @default.
- W2893810779 hasConcept C33923547 @default.
- W2893810779 hasConcept C42047476 @default.
- W2893810779 hasConcept C49775889 @default.
- W2893810779 hasConcept C55974624 @default.
- W2893810779 hasConcept C60507348 @default.
- W2893810779 hasConcept C62520636 @default.
- W2893810779 hasConcept C9679016 @default.
- W2893810779 hasConceptScore W2893810779C105795698 @default.
- W2893810779 hasConceptScore W2893810779C106301342 @default.
- W2893810779 hasConceptScore W2893810779C114614502 @default.
- W2893810779 hasConceptScore W2893810779C118615104 @default.
- W2893810779 hasConceptScore W2893810779C121332964 @default.
- W2893810779 hasConceptScore W2893810779C121864883 @default.
- W2893810779 hasConceptScore W2893810779C21031990 @default.
- W2893810779 hasConceptScore W2893810779C28826006 @default.
- W2893810779 hasConceptScore W2893810779C33923547 @default.
- W2893810779 hasConceptScore W2893810779C42047476 @default.
- W2893810779 hasConceptScore W2893810779C49775889 @default.
- W2893810779 hasConceptScore W2893810779C55974624 @default.
- W2893810779 hasConceptScore W2893810779C60507348 @default.
- W2893810779 hasConceptScore W2893810779C62520636 @default.
- W2893810779 hasConceptScore W2893810779C9679016 @default.
- W2893810779 hasLocation W28938107791 @default.
- W2893810779 hasOpenAccess W2893810779 @default.
- W2893810779 hasPrimaryLocation W28938107791 @default.
- W2893810779 hasRelatedWork W1865390738 @default.
- W2893810779 hasRelatedWork W1925337369 @default.
- W2893810779 hasRelatedWork W2016176419 @default.
- W2893810779 hasRelatedWork W2057146486 @default.
- W2893810779 hasRelatedWork W2099172978 @default.
- W2893810779 hasRelatedWork W2160448918 @default.
- W2893810779 hasRelatedWork W2283141192 @default.
- W2893810779 hasRelatedWork W2511927790 @default.
- W2893810779 hasRelatedWork W2545214985 @default.
- W2893810779 hasRelatedWork W2896904397 @default.
- W2893810779 hasRelatedWork W2909322566 @default.
- W2893810779 hasRelatedWork W2949244741 @default.
- W2893810779 hasRelatedWork W2951278501 @default.
- W2893810779 hasRelatedWork W2971198751 @default.
- W2893810779 hasRelatedWork W3080500608 @default.
- W2893810779 hasRelatedWork W3104824678 @default.
- W2893810779 hasRelatedWork W3124702936 @default.
- W2893810779 hasRelatedWork W3188041471 @default.
- W2893810779 hasRelatedWork W3208832270 @default.
- W2893810779 hasRelatedWork W862060148 @default.
- W2893810779 isParatext "false" @default.
- W2893810779 isRetracted "false" @default.
- W2893810779 magId "2893810779" @default.
- W2893810779 workType "dissertation" @default.